在这项工作中,我们研究了一个非负矩阵分解的变体,我们希望找到给定输入矩阵的对称分解成稀疏的布尔矩阵。正式说话,给定$ \ mathbf {m} \ in \ mathbb {z} ^ {m \ times m} $,我们想找到$ \ mathbf {w} \ in \ {0,1 \} ^ {m \ times $} $这样$ \ | \ mathbf {m} - \ mathbf {w} \ mathbf {w} ^ \ top \ | _0 $在所有$ \ mathbf {w} $中最小化为$ k $ -parse。这个问题结果表明与恢复线图中的超图以及私人神经网络训练的重建攻击相比密切相关。由于这个问题在最坏的情况下,我们研究了在这些重建攻击的背景下出现的自然平均水平变体:$ \ mathbf {m} = \ mathbf {w} \ mathbf {w} ^ {\ top $ \ mathbf {w} $ \ mathbf {w} $ k $ -parse行的随机布尔矩阵,目标是恢复$ \ mathbf {w} $上列排列。等效,这可以被认为是从其线图中恢复均匀随机的k $ k $。我们的主要结果是基于对$ \ MATHBF {W} $的引导高阶信息的此问题的多项式算法,然后分解适当的张量。我们分析中的关键成分,可能是独立的兴趣,是表示这种矩阵$ \ mathbf {w} $在$ m = \ widetilde {\ omega}(r)时,这一矩阵$ \ mathbf {w} $具有高概率。 $,我们使用Littlewood-Offord理论的工具和二进制Krawtchouk多项式的估算。
translated by 谷歌翻译
我们研究了在存在$ \ epsilon $ - 对抗异常值的高维稀疏平均值估计的问题。先前的工作为此任务获得了该任务的样本和计算有效算法,用于辅助性Subgaussian分布。在这项工作中,我们开发了第一个有效的算法,用于强大的稀疏平均值估计,而没有对协方差的先验知识。对于$ \ Mathbb r^d $上的分布,带有“认证有限”的$ t $ tum-矩和足够轻的尾巴,我们的算法达到了$ o(\ epsilon^{1-1/t})$带有样品复杂性$的错误(\ epsilon^{1-1/t}) m =(k \ log(d))^{o(t)}/\ epsilon^{2-2/t} $。对于高斯分布的特殊情况,我们的算法达到了$ \ tilde o(\ epsilon)$的接近最佳错误,带有样品复杂性$ m = o(k^4 \ mathrm {polylog}(d)(d))/\ epsilon^^ 2 $。我们的算法遵循基于方形的总和,对算法方法的证明。我们通过统计查询和低度多项式测试的下限来补充上限,提供了证据,表明我们算法实现的样本时间 - 错误权衡在质量上是最好的。
translated by 谷歌翻译
混合模型被广泛用于拟合复杂和多模式数据集。在本文中,我们研究了具有高维稀疏潜在参数矢量的混合物,并考虑了支持这些向量的恢复的问题。尽管对混合模型中的参数学习进行了充分研究,但稀疏性约束仍然相对尚未探索。参数向量的稀疏性是各种设置的自然约束,支持恢复是参数估计的主要步骤。我们为支持恢复提供有效的算法,该算法具有对数样品的复杂性依赖于潜在空间的维度。我们的算法非常笼统,即它们适用于1)许多不同规范分布的混合物,包括统一,泊松,拉普拉斯,高斯人等。2)在统一参数的不同假设下,线性回归和线性分类器与高斯协变量的混合物与高斯协变量的混合物。在大多数这些设置中,我们的结果是对问题的首先保证,而在其余部分中,我们的结果为现有作品提供了改进。
translated by 谷歌翻译
我们考虑了在高维度中平均分离的高斯聚类混合物的问题。我们是从$ k $身份协方差高斯的混合物提供的样本,使任何两对手段之间的最小成对距离至少为$ \ delta $,对于某些参数$ \ delta> 0 $,目标是恢复这些样本的地面真相聚类。它是分离$ \ delta = \ theta(\ sqrt {\ log k})$既有必要且足以理解恢复良好的聚类。但是,实现这种担保的估计值效率低下。我们提供了在多项式时间内运行的第一算法,几乎符合此保证。更确切地说,我们给出了一种算法,它需要多项式许多样本和时间,并且可以成功恢复良好的聚类,只要分离为$ \ delta = \ oomega(\ log ^ {1/2 + c} k)$ ,任何$ c> 0 $。以前,当分离以k $的分离和可以容忍$ \ textsf {poly}(\ log k)$分离所需的quasi arynomial时间时,才知道该问题的多项式时间算法。我们还将我们的结果扩展到分布的分布式的混合物,该分布在额外的温和假设下满足Poincar \ {e}不等式的分布。我们认为我们相信的主要技术工具是一种新颖的方式,可以隐含地代表和估计分配的​​高度时刻,这使我们能够明确地提取关于高度时刻的重要信息而没有明确地缩小全瞬间张量。
translated by 谷歌翻译
我们研究了用于线性回归的主动采样算法,该算法仅旨在查询目标向量$ b \ in \ mathbb {r} ^ n $的少量条目,并将近最低限度输出到$ \ min_ {x \ In \ mathbb {r} ^ d} \ | ax-b \ | $,其中$ a \ in \ mathbb {r} ^ {n \ times d} $是一个设计矩阵和$ \ | \ cdot \ | $是一些损失函数。对于$ \ ell_p $ norm回归的任何$ 0 <p <\ idty $,我们提供了一种基于Lewis权重采样的算法,其使用只需$ \ tilde {o}输出$(1+ \ epsilon)$近似解决方案(d ^ {\ max(1,{p / 2})} / \ mathrm {poly}(\ epsilon))$查询到$ b $。我们表明,这一依赖于$ D $是最佳的,直到对数因素。我们的结果解决了陈和Derezi的最近开放问题,陈和Derezi \'{n} Ski,他们为$ \ ell_1 $ norm提供了附近的最佳界限,以及$ p \中的$ \ ell_p $回归的次优界限(1,2) $。我们还提供了$ O的第一个总灵敏度上限(D ^ {\ max \ {1,p / 2 \} \ log ^ 2 n)$以满足最多的$ p $多项式增长。这改善了Tukan,Maalouf和Feldman的最新结果。通过将此与我们的技术组合起来的$ \ ell_p $回归结果,我们获得了一个使$ \ tilde o的活动回归算法(d ^ {1+ \ max \ {1,p / 2 \}} / \ mathrm {poly}。 (\ epsilon))$疑问,回答陈和德里兹的另一个打开问题{n}滑雪。对于Huber损失的重要特殊情况,我们进一步改善了我们对$ \ tilde o的主动样本复杂性的绑定(d ^ {(1+ \ sqrt2)/ 2} / \ epsilon ^ c)$和非活跃$ \ tilde o的样本复杂性(d ^ {4-2 \ sqrt 2} / \ epsilon ^ c)$,由于克拉克森和伍德拉夫而改善了Huber回归的以前的D ^ 4 $。我们的敏感性界限具有进一步的影响,使用灵敏度采样改善了各种先前的结果,包括orlicz规范子空间嵌入和鲁棒子空间近似。最后,我们的主动采样结果为每种$ \ ell_p $ norm提供的第一个Sublinear时间算法。
translated by 谷歌翻译
恢复来自简单测量的稀疏向量的支持是一个广泛研究的问题,考虑在压缩传感,1位压缩感测和更通用的单一索引模型下。我们考虑这个问题的概括:线性回归的混合物,以及线性分类器的混合物,其中目标是仅使用少量可能嘈杂的线性和1位测量来恢复多个稀疏载体的支持。关键挑战是,来自不同载体的测量是随机混合的。最近也接受了这两个问题。在线性分类器的混合物中,观察结果对应于查询的超平面侧随机未知向量,而在线性回归的混合物中,我们观察在查询的超平面上的随机未知向量的投影。从混合物中回收未知载体的主要步骤是首先识别所有单个组分载体的支持。在这项工作中,我们研究了足以在这两种模型中恢复混合物中所有组件向量的支持的测量数量。我们提供使用$ k,\ log n $和准多项式在$ \ ell $中使用多项式多项式的算法,以恢复在每个人的高概率中恢复所有$ \ ell $未知向量的支持组件是$ k $ -parse $ n $ -dimensional向量。
translated by 谷歌翻译
我们提出了改进的算法,并为身份测试$ n $维分布的问题提供了统计和计算下限。在身份测试问题中,我们将作为输入作为显式分发$ \ mu $,$ \ varepsilon> 0 $,并访问对隐藏分布$ \ pi $的采样甲骨文。目标是区分两个分布$ \ mu $和$ \ pi $是相同的还是至少$ \ varepsilon $ -far分开。当仅从隐藏分布$ \ pi $中访问完整样本时,众所周知,可能需要许多样本,因此以前的作品已经研究了身份测试,并额外访问了各种有条件采样牙齿。我们在这里考虑一个明显弱的条件采样甲骨文,称为坐标Oracle,并在此新模型中提供了身份测试问题的相当完整的计算和统计表征。我们证明,如果一个称为熵的分析属性为可见分布$ \ mu $保留,那么对于任何使用$ \ tilde {o}(n/\ tilde {o}),有一个有效的身份测试算法Varepsilon)$查询坐标Oracle。熵的近似张力是一种经典的工具,用于证明马尔可夫链的最佳混合时间边界用于高维分布,并且最近通过光谱独立性为许多分布族建立了最佳的混合时间。我们将算法结果与匹配的$ \ omega(n/\ varepsilon)$统计下键进行匹配的算法结果补充,以供坐标Oracle下的查询数量。我们还证明了一个计算相变:对于$ \ {+1,-1,-1 \}^n $以上的稀疏抗抗铁磁性模型,在熵失败的近似张力失败的状态下,除非RP = np,否则没有有效的身份测试算法。
translated by 谷歌翻译
聚类是无监督学习中的基本原始,它引发了丰富的计算挑战性推理任务。在这项工作中,我们专注于将$ D $ -dimential高斯混合的规范任务与未知(和可能的退化)协方差集成。最近的作品(Ghosh等人。恢复在高斯聚类实例中种植的某些隐藏结构。在许多类似的推理任务上的工作开始,这些较低界限强烈建议存在群集的固有统计到计算间隙,即群集任务是\ yringit {statistically}可能但没有\ texit {多项式 - 时间}算法成功。我们考虑的聚类任务的一个特殊情况相当于在否则随机子空间中找到种植的超立体载体的问题。我们表明,也许令人惊讶的是,这种特定的聚类模型\ extent {没有展示}统计到计算间隙,即使在这种情况下继续应用上述的低度和SOS下限。为此,我们提供了一种基于Lenstra - Lenstra - Lovasz晶格基础减少方法的多项式算法,该方法实现了$ D + 1 $样本的统计上最佳的样本复杂性。该结果扩展了猜想统计到计算间隙的问题的类问题可以通过“脆弱”多项式算法“关闭”,突出显示噪声在统计到计算间隙的发作中的关键而微妙作用。
translated by 谷歌翻译
We study the relationship between adversarial robustness and differential privacy in high-dimensional algorithmic statistics. We give the first black-box reduction from privacy to robustness which can produce private estimators with optimal tradeoffs among sample complexity, accuracy, and privacy for a wide range of fundamental high-dimensional parameter estimation problems, including mean and covariance estimation. We show that this reduction can be implemented in polynomial time in some important special cases. In particular, using nearly-optimal polynomial-time robust estimators for the mean and covariance of high-dimensional Gaussians which are based on the Sum-of-Squares method, we design the first polynomial-time private estimators for these problems with nearly-optimal samples-accuracy-privacy tradeoffs. Our algorithms are also robust to a constant fraction of adversarially-corrupted samples.
translated by 谷歌翻译
我们在高斯分布下使用Massart噪声与Massart噪声进行PAC学习半个空间的问题。在Massart模型中,允许对手将每个点$ \ mathbf {x} $的标签与未知概率$ \ eta(\ mathbf {x})\ leq \ eta $,用于某些参数$ \ eta \ [0,1 / 2] $。目标是找到一个假设$ \ mathrm {opt} + \ epsilon $的错误分类错误,其中$ \ mathrm {opt} $是目标半空间的错误。此前已经在两个假设下研究了这个问题:(i)目标半空间是同质的(即,分离超平面通过原点),并且(ii)参数$ \ eta $严格小于$ 1/2 $。在此工作之前,当除去这些假设中的任何一个时,不知道非增长的界限。我们研究了一般问题并建立以下内容:对于$ \ eta <1/2 $,我们为一般半个空间提供了一个学习算法,采用样本和计算复杂度$ d ^ {o_ {\ eta}(\ log(1 / \ gamma) )))}} \ mathrm {poly}(1 / \ epsilon)$,其中$ \ gamma = \ max \ {\ epsilon,\ min \ {\ mathbf {pr} [f(\ mathbf {x})= 1], \ mathbf {pr} [f(\ mathbf {x})= -1] \} \} $是目标半空间$ f $的偏差。现有的高效算法只能处理$ \ gamma = 1/2 $的特殊情况。有趣的是,我们建立了$ d ^ {\ oomega(\ log(\ log(\ log(\ log))}}的质量匹配的下限,而是任何统计查询(SQ)算法的复杂性。对于$ \ eta = 1/2 $,我们为一般半空间提供了一个学习算法,具有样本和计算复杂度$ o_ \ epsilon(1)d ^ {o(\ log(1 / epsilon))} $。即使对于均匀半空间的子类,这个结果也是新的;均匀Massart半个空间的现有算法为$ \ eta = 1/2 $提供可持续的保证。我们与D ^ {\ omega(\ log(\ log(\ log(\ log(\ epsilon))} $的近似匹配的sq下限补充了我们的上限,这甚至可以为同类半空间的特殊情况而保持。
translated by 谷歌翻译
我们显示出与错误(LWE)问题的经典学习之间的直接和概念上的简单减少,其连续类似物(Bruna,Regev,Song and Tang,STOC 2021)。这使我们能够将基于LWE的密码学的强大机械带到Clwe的应用中。例如,我们在GAP最短矢量问题的经典最坏情况下获得了Clwe的硬度。以前,这仅在晶格问题的量子最坏情况下才知道。更广泛地说,随着我们在两个问题之间的减少,LWE的未来发展也将适用于CLWE及其下游应用程序。作为一种具体的应用,我们显示了高斯混合物密度估计的硬度结果改善。在此计算问题中,给定样品访问高斯人的混合物,目标是输出估计混合物密度函数的函数。在经典LWE问题的(合理且被广泛相信的)指数硬度下,我们表明高斯混合物密度估计$ \ Mathbb {r}^n $,大约$ \ log n $ gaussian组件给定$ \ mathsf {poly}(poly}(poly}(poly})) n)$样品需要$ n $的时间准分线性。在LWE的(保守)多项式硬度下,我们显示出$ n^{\ epsilon} $高斯的密度估计,对于任何常数$ \ epsilon> 0 $,它可以改善Bruna,Regev,Song和Tang(Stoc 2021) ,在多项式(量子)硬度假设下,他们至少以$ \ sqrt {n} $高斯的表现表现出硬度。我们的关键技术工具是从古典LWE到LWE的缩短,并使用$ k $ -sparse Secrets,其中噪声的乘法增加仅为$ o(\ sqrt {k})$,与环境尺寸$ n $无关。
translated by 谷歌翻译
我们开发了一种高效的随机块模型中的弱恢复算法。该算法与随机块模型的Vanilla版本的最佳已知算法的统计保证匹配。从这个意义上讲,我们的结果表明,随机块模型没有稳健性。我们的工作受到最近的银行,Mohanty和Raghavendra(SODA 2021)的工作,为相应的区别问题提供了高效的算法。我们的算法及其分析显着脱离了以前的恢复。关键挑战是我们算法的特殊优化景观:种植的分区可能远非最佳意义,即完全不相关的解决方案可以实现相同的客观值。这种现象与PCA的BBP相转变的推出效应有关。据我们所知,我们的算法是第一个在非渐近设置中存在这种推出效果的鲁棒恢复。我们的算法是基于凸优化的框架的实例化(与平方和不同的不同),这对于其他鲁棒矩阵估计问题可能是有用的。我们的分析的副产物是一种通用技术,其提高了任意强大的弱恢复算法的成功(输入的随机性)从恒定(或缓慢消失)概率以指数高概率。
translated by 谷歌翻译
Suppose we are given an $n$-dimensional order-3 symmetric tensor $T \in (\mathbb{R}^n)^{\otimes 3}$ that is the sum of $r$ random rank-1 terms. The problem of recovering the rank-1 components is possible in principle when $r \lesssim n^2$ but polynomial-time algorithms are only known in the regime $r \ll n^{3/2}$. Similar "statistical-computational gaps" occur in many high-dimensional inference tasks, and in recent years there has been a flurry of work on explaining the apparent computational hardness in these problems by proving lower bounds against restricted (yet powerful) models of computation such as statistical queries (SQ), sum-of-squares (SoS), and low-degree polynomials (LDP). However, no such prior work exists for tensor decomposition, largely because its hardness does not appear to be explained by a "planted versus null" testing problem. We consider a model for random order-3 tensor decomposition where one component is slightly larger in norm than the rest (to break symmetry), and the components are drawn uniformly from the hypercube. We resolve the computational complexity in the LDP model: $O(\log n)$-degree polynomial functions of the tensor entries can accurately estimate the largest component when $r \ll n^{3/2}$ but fail to do so when $r \gg n^{3/2}$. This provides rigorous evidence suggesting that the best known algorithms for tensor decomposition cannot be improved, at least by known approaches. A natural extension of the result holds for tensors of any fixed order $k \ge 3$, in which case the LDP threshold is $r \sim n^{k/2}$.
translated by 谷歌翻译
We study the fundamental task of outlier-robust mean estimation for heavy-tailed distributions in the presence of sparsity. Specifically, given a small number of corrupted samples from a high-dimensional heavy-tailed distribution whose mean $\mu$ is guaranteed to be sparse, the goal is to efficiently compute a hypothesis that accurately approximates $\mu$ with high probability. Prior work had obtained efficient algorithms for robust sparse mean estimation of light-tailed distributions. In this work, we give the first sample-efficient and polynomial-time robust sparse mean estimator for heavy-tailed distributions under mild moment assumptions. Our algorithm achieves the optimal asymptotic error using a number of samples scaling logarithmically with the ambient dimension. Importantly, the sample complexity of our method is optimal as a function of the failure probability $\tau$, having an additive $\log(1/\tau)$ dependence. Our algorithm leverages the stability-based approach from the algorithmic robust statistics literature, with crucial (and necessary) adaptations required in our setting. Our analysis may be of independent interest, involving the delicate design of a (non-spectral) decomposition for positive semi-definite matrices satisfying certain sparsity properties.
translated by 谷歌翻译
我们开发了第一个快速频谱算法,用于分解$ \ mathbb {r}^d $排名到$ o的随机三阶张量。我们的算法仅涉及简单的线性代数操作,并且可以在当前矩阵乘法时间下在时间$ o(d^{6.05})$中恢复所有组件。在这项工作之前,只能通过方形的总和[MA,Shi,Steurer 2016]实现可比的保证。相反,快速算法[Hopkins,Schramm,Shi,Steurer 2016]只能分解排名最多的张量(D^{4/3}/\ text {polylog}(d))$。我们的算法结果取决于两种关键成分。将三阶张量的清洁提升到六阶张量,可以用张量网络的语言表示。将张量网络仔细分解为一系列矩形矩阵乘法,这使我们能够快速实现该算法。
translated by 谷歌翻译
The stochastic block model (SBM) is a fundamental model for studying graph clustering or community detection in networks. It has received great attention in the last decade and the balanced case, i.e., assuming all clusters have large size, has been well studied. However, our understanding of SBM with unbalanced communities (arguably, more relevant in practice) is still very limited. In this paper, we provide a simple SVD-based algorithm for recovering the communities in the SBM with communities of varying sizes. We improve upon a result of Ailon, Chen and Xu [ICML 2013] by removing the assumption that there is a large interval such that the sizes of clusters do not fall in. Under the planted clique conjecture, the size of the clusters that can be recovered by our algorithm is nearly optimal (up to polylogarithmic factors) when the probability parameters are constant. As a byproduct, we obtain a polynomial-time algorithm with sublinear query complexity for a clustering problem with a faulty oracle, which finds all clusters of size larger than $\tilde{\Omega}({\sqrt{n}})$ even if $\Omega(n)$ small clusters co-exist in the graph. In contrast, all the previous efficient algorithms that makes sublinear number of queries cannot recover any large cluster, if there are more than $\tilde{\Omega}(n^{2/5})$ small clusters.
translated by 谷歌翻译
在这项工作中,我们将轨道恢复问题超过$ SO(3)$,其中目标是从嘈杂的测量到它的随机旋转副本中的球体上恢复带有限制功能。这是通过冷冻电子断层扫描恢复分子的三维结构的问题的自然抽象。对称发挥重要作用:恢复旋转函数相当于求解来自与组动作相关的不变环的多项式方程系统。先前的工作通过计算代数工具调查了该系统,该工具高达一定尺寸。然而,许多统计和算法问题仍然存在:恢复有多少次,或者等效在何种程度下,不变多项式会产生全不变环?是否有可能算法解决该多项式方程系统?从平滑分析的角度来看,我们重新审视这些问题,从而基于球面谐波扰乱了该功能的系数。我们的主要结果是轨道恢复的准多项式时间算法超过$ SO(3)$在此模型中。我们通过建立一个{\ EM线性}方程来利用多项式方程系统的分层结构来分析一个被称为频率行进的频率谱系,以便为已经找到了较低阶频率来解决高阶频率的{\ EM线性}方程的系统。主要问题是:这些系统有一个独特的解决方案吗?错误的错误有多快?我们的主要技术贡献是在限制这些代数结构线性系统的条件数。因此,平滑分析提供了一个引人注目的模型,我们可以扩展我们可以在轨道恢复中处理的组动作类型,超出有限和/或雅典的情况。
translated by 谷歌翻译
Kernel matrices, as well as weighted graphs represented by them, are ubiquitous objects in machine learning, statistics and other related fields. The main drawback of using kernel methods (learning and inference using kernel matrices) is efficiency -- given $n$ input points, most kernel-based algorithms need to materialize the full $n \times n$ kernel matrix before performing any subsequent computation, thus incurring $\Omega(n^2)$ runtime. Breaking this quadratic barrier for various problems has therefore, been a subject of extensive research efforts. We break the quadratic barrier and obtain $\textit{subquadratic}$ time algorithms for several fundamental linear-algebraic and graph processing primitives, including approximating the top eigenvalue and eigenvector, spectral sparsification, solving linear systems, local clustering, low-rank approximation, arboricity estimation and counting weighted triangles. We build on the recent Kernel Density Estimation framework, which (after preprocessing in time subquadratic in $n$) can return estimates of row/column sums of the kernel matrix. In particular, we develop efficient reductions from $\textit{weighted vertex}$ and $\textit{weighted edge sampling}$ on kernel graphs, $\textit{simulating random walks}$ on kernel graphs, and $\textit{importance sampling}$ on matrices to Kernel Density Estimation and show that we can generate samples from these distributions in $\textit{sublinear}$ (in the support of the distribution) time. Our reductions are the central ingredient in each of our applications and we believe they may be of independent interest. We empirically demonstrate the efficacy of our algorithms on low-rank approximation (LRA) and spectral sparsification, where we observe a $\textbf{9x}$ decrease in the number of kernel evaluations over baselines for LRA and a $\textbf{41x}$ reduction in the graph size for spectral sparsification.
translated by 谷歌翻译
我们考虑强大的线性回归模型$ \ boldsymbol {y} = x \ beta^* + \ boldsymbol {\ eta} $,其中一个对手忽略了design $ x \ in \ mathbb {r}^r}^n \ times D } $可以选择$ \ boldsymbol {\ eta} $以损坏所有观测值的(可能消失的)$ \ boldsymbol {y} $以任意方式。最近的工作[DLN+21,DNS21]引入了有效的算法,以持续恢复参数矢量。这些算法至关重要地依赖于设计矩阵非常广泛(如果其列跨度远非任何稀疏矢量,矩阵就可以很好地扩展)。在本文中,我们表明存在一个缺乏良好性的设计矩阵家族,因此从理论上讲,在上述稳健线性回归模型中,参数向量的持续恢复是不可能的。我们进一步研究了随机矩阵的良好表现的平均案例时间复杂性。我们表明,如果观察值的数量在环境维度上是二次的,则可以有效地证明给定的$ n $ by-by-by-by-by-by-d $ d $ d $高斯矩阵是否会很好地扩展。当观察数为$ O(d^2)$时,我们通过显示出相同认证问题的计算硬度的严格证据来补充这一结果。
translated by 谷歌翻译
在这项工作中,我们研究了具有对抗性节点损坏的随机块模型中社区发现的问题。我们的主要结果是一种有效的算法,该算法可以忍受$ \ epsilon $ - 损坏和达到错误$ o(\ epsilon) + e^{ - \ frac {c} {2} {2}(1 \ pm o(1))} $其中$ c =(\ sqrt {a} - \ sqrt {b})^2 $是信噪比,$ a/n $和$ b/n $是互发和intra-intra-intra-社区连接概率分别。这些界限基本上与无损坏的SBM的最小值相匹配。我们还为$ \ mathbb {z} _2 $ -Synchronization提供了可靠的算法。我们算法的核心是一个新的半决赛程序,它使用全局信息来鲁棒提高粗糙聚类的准确性。此外,我们表明我们的算法是双重的,因为它们在更具挑战性的噪声模型中起作用,该模型将对抗性腐败与无限制的单调变化混合在一起,从半随机模型中。
translated by 谷歌翻译