从较高的计算效率到实现新颖和复杂结构的发现,深度学习已成为设计和优化纳米光子电路和组件的有力框架。但是,数据驱动和基于勘探的机器学习策略在其对纳米光逆设计的有效性方面都有局限性。监督的机器学习方法需要大量的培训数据,以产生高性能模型,并且在设计空间的复杂性鉴于训练数据之外,难以推广。另一方面,基于无监督和强化学习的方法可以具有与之相关的非常长的培训或优化时间。在这里,我们证明了一种混合监督的学习和强化学习方法来实现纳米光子结构的逆设计,并证明这种方法可以减少训练数据的依赖性,改善模型预测的普遍性,并通过数量级缩短探索性培训时间。因此,提出的策略解决了许多现代深度学习的挑战,同时为新的设计方法开辟了大门,这些方法利用了多种机器学习算法来为光子设计提供更有效和实用的解决方案。
translated by 谷歌翻译
在这里,我们报告了强化学习(RL)的案例研究实施,以自动化扫描传输电子显微镜(STEM)工作流程中的操作。为此,我们设计了一个虚拟的,典型的RL环境,以测试和开发网络,以自主对电子束进行自主对齐,而无需事先了解。使用此模拟器,我们评估了环境设计和算法超参数对对齐准确性和学习收敛的影响,从而显示了宽阔的超级参数空间的稳健收敛性。此外,我们在显微镜上部署了成功的模型,以验证该方法并演示设计适当的虚拟环境的价值。与模拟结果一致,微观RL模型在最小的训练后达到了与目标一致性的收敛。总体而言,结果表明,通过利用RL,可以自动化显微镜操作而无需广泛的算法设计,从而通过机器学习方法迈出了增强电子显微镜的又一步。
translated by 谷歌翻译
在过去的几年中,有监督的学习(SL)已确立了自己的最新数据驱动湍流建模。在SL范式中,基于数据集对模型进行了训练,该数据集通常通过应用相应的滤波器函数来从高保真解决方案中计算出先验的模型,该函数将已分离的和未分辨的流量尺度分开。对于隐式过滤的大涡模拟(LES),此方法是不可行的,因为在这里,使用的离散化本身是隐式滤波器函数。因此,通常不知道确切的滤波器形式,因此,即使有完整的解决方案可用,也无法计算相应的闭合项。强化学习(RL)范式可用于避免通过先前获得的培训数据集训练,而是通过直接与动态LES环境本身进行交互来避免这种不一致。这允许通过设计将潜在复杂的隐式LES过滤器纳入训练过程中。在这项工作中,我们应用了一个增强学习框架,以找到最佳的涡流粘度,以隐式过滤强制均匀的各向同性湍流的大型涡流模拟。为此,我们将基于卷积神经网络的策略网络制定湍流建模的任务作为RL任务,该杂志神经网络仅基于局部流量状态在时空中动态地适应LES中的涡流效率。我们证明,受过训练的模型可以提供长期稳定的模拟,并且在准确性方面,它们的表现优于建立的分析模型。此外,这些模型可以很好地推广到其他决议和离散化。因此,我们证明RL可以为一致,准确和稳定的湍流建模提供一个框架,尤其是对于隐式过滤的LE。
translated by 谷歌翻译
尽管深度强化学习(RL)最近取得了许多成功,但其方法仍然效率低下,这使得在数据方面解决了昂贵的许多问题。我们的目标是通过利用未标记的数据中的丰富监督信号来进行学习状态表示,以解决这一问题。本文介绍了三种不同的表示算法,可以访问传统RL算法使用的数据源的不同子集使用:(i)GRICA受到独立组件分析(ICA)的启发,并训练深层神经网络以输出统计独立的独立特征。输入。 Grica通过最大程度地减少每个功能与其他功能之间的相互信息来做到这一点。此外,格里卡仅需要未分类的环境状态。 (ii)潜在表示预测(LARP)还需要更多的上下文:除了要求状态作为输入外,它还需要先前的状态和连接它们的动作。该方法通过预测当前状态和行动的环境的下一个状态来学习状态表示。预测器与图形搜索算法一起使用。 (iii)重新培训通过训练深层神经网络来学习国家表示,以学习奖励功能的平滑版本。该表示形式用于预处理输入到深度RL,而奖励预测指标用于奖励成型。此方法仅需要环境中的状态奖励对学习表示表示。我们发现,每种方法都有其优势和缺点,并从我们的实验中得出结论,包括无监督的代表性学习在RL解决问题的管道中可以加快学习的速度。
translated by 谷歌翻译
Profile extrusion is a continuous production process for manufacturing plastic profiles from molten polymer. Especially interesting is the design of the die, through which the melt is pressed to attain the desired shape. However, due to an inhomogeneous velocity distribution at the die exit or residual stresses inside the extrudate, the final shape of the manufactured part often deviates from the desired one. To avoid these deviations, the shape of the die can be computationally optimized, which has already been investigated in the literature using classical optimization approaches. A new approach in the field of shape optimization is the utilization of Reinforcement Learning (RL) as a learning-based optimization algorithm. RL is based on trial-and-error interactions of an agent with an environment. For each action, the agent is rewarded and informed about the subsequent state of the environment. While not necessarily superior to classical, e.g., gradient-based or evolutionary, optimization algorithms for one single problem, RL techniques are expected to perform especially well when similar optimization tasks are repeated since the agent learns a more general strategy for generating optimal shapes instead of concentrating on just one single problem. In this work, we investigate this approach by applying it to two 2D test cases. The flow-channel geometry can be modified by the RL agent using so-called Free-Form Deformation, a method where the computational mesh is embedded into a transformation spline, which is then manipulated based on the control-point positions. In particular, we investigate the impact of utilizing different agents on the training progress and the potential of wall time saving by utilizing multiple environments during training.
translated by 谷歌翻译
近年来,机器学习的巨大进步已经开始对许多科学和技术的许多领域产生重大影响。在本文的文章中,我们探讨了量子技术如何从这项革命中受益。我们在说明性示例中展示了过去几年的科学家如何开始使用机器学习和更广泛的人工智能方法来分析量子测量,估计量子设备的参数,发现新的量子实验设置,协议和反馈策略,以及反馈策略,以及通常改善量子计算,量子通信和量子模拟的各个方面。我们重点介绍了公开挑战和未来的可能性,并在未来十年的一些投机愿景下得出结论。
translated by 谷歌翻译
The ultimate goal of artificial intelligence is to mimic the human brain to perform decision-making and control directly from high-dimensional sensory input. All-optical diffractive neural networks provide a promising solution for realizing artificial intelligence with high-speed and low-power consumption. To date, most of the reported diffractive neural networks focus on single or multiple tasks that do not involve interaction with the environment, such as object recognition and image classification, while the networks that can perform decision-making and control, to our knowledge, have not been developed yet. Here, we propose to use deep reinforcement learning to realize diffractive neural networks that enable imitating the human-level capability of decision-making and control. Such networks allow for finding optimal control policies through interaction with the environment and can be readily realized with the dielectric metasurfaces. The superior performances of these networks are verified by engaging three types of classic games, Tic-Tac-Toe, Super Mario Bros., and Car Racing, and achieving the same or even higher levels comparable to human players. Our work represents a solid step of advancement in diffractive neural networks, which promises a fundamental shift from the target-driven control of a pre-designed state for simple recognition or classification tasks to the high-level sensory capability of artificial intelligence. It may find exciting applications in autonomous driving, intelligent robots, and intelligent manufacturing.
translated by 谷歌翻译
The use of reinforcement learning has proven to be very promising for solving complex activities without human supervision during their learning process. However, their successful applications are predominantly focused on fictional and entertainment problems - such as games. Based on the above, this work aims to shed light on the application of reinforcement learning to solve this relevant real-world problem, the genome assembly. By expanding the only approach found in the literature that addresses this problem, we carefully explored the aspects of intelligent agent learning, performed by the Q-learning algorithm, to understand its suitability to be applied in scenarios whose characteristics are more similar to those faced by real genome projects. The improvements proposed here include changing the previously proposed reward system and including state space exploration optimization strategies based on dynamic pruning and mutual collaboration with evolutionary computing. These investigations were tried on 23 new environments with larger inputs than those used previously. All these environments are freely available on the internet for the evolution of this research by the scientific community. The results suggest consistent performance progress using the proposed improvements, however, they also demonstrate the limitations of them, especially related to the high dimensionality of state and action spaces. We also present, later, the paths that can be traced to tackle genome assembly efficiently in real scenarios considering recent, successfully reinforcement learning applications - including deep reinforcement learning - from other domains dealing with high-dimensional inputs.
translated by 谷歌翻译
The high emission and low energy efficiency caused by internal combustion engines (ICE) have become unacceptable under environmental regulations and the energy crisis. As a promising alternative solution, multi-power source electric vehicles (MPS-EVs) introduce different clean energy systems to improve powertrain efficiency. The energy management strategy (EMS) is a critical technology for MPS-EVs to maximize efficiency, fuel economy, and range. Reinforcement learning (RL) has become an effective methodology for the development of EMS. RL has received continuous attention and research, but there is still a lack of systematic analysis of the design elements of RL-based EMS. To this end, this paper presents an in-depth analysis of the current research on RL-based EMS (RL-EMS) and summarizes the design elements of RL-based EMS. This paper first summarizes the previous applications of RL in EMS from five aspects: algorithm, perception scheme, decision scheme, reward function, and innovative training method. The contribution of advanced algorithms to the training effect is shown, the perception and control schemes in the literature are analyzed in detail, different reward function settings are classified, and innovative training methods with their roles are elaborated. Finally, by comparing the development routes of RL and RL-EMS, this paper identifies the gap between advanced RL solutions and existing RL-EMS. Finally, this paper suggests potential development directions for implementing advanced artificial intelligence (AI) solutions in EMS.
translated by 谷歌翻译
机器人和与世界相互作用或互动的机器人和智能系统越来越多地被用来自动化各种任务。这些系统完成这些任务的能力取决于构成机器人物理及其传感器物体的机械和电气部件,例如,感知算法感知环境,并计划和控制算法以生产和控制算法来生产和控制算法有意义的行动。因此,通常有必要在设计具体系统时考虑这些组件之间的相互作用。本文探讨了以端到端方式对机器人系统进行任务驱动的合作的工作,同时使用推理或控制算法直接优化了系统的物理组件以进行任务性能。我们首先考虑直接优化基于信标的本地化系统以达到本地化准确性的问题。设计这样的系统涉及将信标放置在整个环境中,并通过传感器读数推断位置。在我们的工作中,我们开发了一种深度学习方法,以直接优化信标的放置和位置推断以达到本地化精度。然后,我们将注意力转移到了由任务驱动的机器人及其控制器优化的相关问题上。在我们的工作中,我们首先提出基于多任务增强学习的数据有效算法。我们的方法通过利用能够在物理设计的空间上概括设计条件的控制器,有效地直接优化了物理设计和控制参数,以直接优化任务性能。然后,我们对此进行跟进,以允许对离散形态参数(例如四肢的数字和配置)进行优化。最后,我们通过探索优化的软机器人的制造和部署来得出结论。
translated by 谷歌翻译
System identification, also known as learning forward models, transfer functions, system dynamics, etc., has a long tradition both in science and engineering in different fields. Particularly, it is a recurring theme in Reinforcement Learning research, where forward models approximate the state transition function of a Markov Decision Process by learning a mapping function from current state and action to the next state. This problem is commonly defined as a Supervised Learning problem in a direct way. This common approach faces several difficulties due to the inherent complexities of the dynamics to learn, for example, delayed effects, high non-linearity, non-stationarity, partial observability and, more important, error accumulation when using bootstrapped predictions (predictions based on past predictions), over large time horizons. Here we explore the use of Reinforcement Learning in this problem. We elaborate on why and how this problem fits naturally and sound as a Reinforcement Learning problem, and present some experimental results that demonstrate RL is a promising technique to solve these kind of problems.
translated by 谷歌翻译
从意外的外部扰动中恢复的能力是双模型运动的基本机动技能。有效的答复包括不仅可以恢复平衡并保持稳定性的能力,而且在平衡恢复物质不可行时,也可以保证安全的方式。对于与双式运动有关的机器人,例如人形机器人和辅助机器人设备,可帮助人类行走,设计能够提供这种稳定性和安全性的控制器可以防止机器人损坏或防止伤害相关的医疗费用。这是一个具有挑战性的任务,因为它涉及用触点产生高维,非线性和致动系统的高动态运动。尽管使用基于模型和优化方法的前进方面,但诸如广泛领域知识的要求,诸如较大的计算时间和有限的动态变化的鲁棒性仍然会使这个打开问题。在本文中,为了解决这些问题,我们开发基于学习的算法,能够为两种不同的机器人合成推送恢复控制政策:人形机器人和有助于双模型运动的辅助机器人设备。我们的工作可以分为两个密切相关的指示:1)学习人形机器人的安全下降和预防策略,2)使用机器人辅助装置学习人类的预防策略。为实现这一目标,我们介绍了一套深度加强学习(DRL)算法,以学习使用这些机器人时提高安全性的控制策略。
translated by 谷歌翻译
计算物理问题问题的有限元离散通常依赖于自适应网格细化(AMR)来优先解决模拟过程中包含重要特征的区域。但是,这些空间改进策略通常是启发式的,并且依靠特定领域的知识或反复试验。我们将自适应网状精炼的过程视为不完整的信息下的本地,顺序决策问题,将AMR作为部分可观察到的马尔可夫决策过程。使用深厚的增强学习方法,我们直接从数值模拟中训练政策网络为AMR策略训练。培训过程不需要精确的解决方案或手头部分微分方程的高保真地面真相,也不需要预先计算的培训数据集。我们强化学习公式的本地性质使政策网络可以廉价地培训比部署的问题要小得多。该方法不是特定于任何特定的部分微分方程,问题维度或数值离散化的特定,并且可以灵活地结合各种问题物理。为此,我们使用各种高阶不连续的Galerkin和杂交不连续的Galerkin有限元离散化,将方法应用于各种偏微分方程。我们表明,由此产生的深入强化学习政策与共同的AMR启发式方法具有竞争力,跨越问题类别概括,并在准确性和成本之间取得了有利的平衡,因此它们通常会导致每个问题自由度的准确性更高。
translated by 谷歌翻译
将监督学习的力量(SL)用于更有效的强化学习(RL)方法,这是最近的趋势。我们通过交替在线RL和离线SL来解决稀疏奖励目标条件问题,提出一种新颖的阶段方法。在在线阶段,我们在离线阶段进行RL培训并收集推出数据,我们对数据集的这些成功轨迹执行SL。为了进一步提高样本效率,我们在在线阶段采用其他技术,包括减少任务以产生更可行的轨迹和基于价值的基于价值的内在奖励,以减轻稀疏的回报问题。我们称此总体算法为阶段性的自我模拟还原(Pair)。对稀疏的奖励目标机器人控制问题(包括具有挑战性的堆叠任务),对基本上优于非强调RL和Phasic SL基线。 Pair是第一个学习堆叠6个立方体的RL方法,只有0/1成功从头开始奖励。
translated by 谷歌翻译
资产分配(或投资组合管理)是确定如何最佳将有限预算的资金分配给一系列金融工具/资产(例如股票)的任务。这项研究调查了使用无模型的深RL代理应用于投资组合管理的增强学习(RL)的性能。我们培训了几个RL代理商的现实股票价格,以学习如何执行资产分配。我们比较了这些RL剂与某些基线剂的性能。我们还比较了RL代理,以了解哪些类别的代理表现更好。从我们的分析中,RL代理可以执行投资组合管理的任务,因为它们的表现明显优于基线代理(随机分配和均匀分配)。四个RL代理(A2C,SAC,PPO和TRPO)总体上优于最佳基线MPT。这显示了RL代理商发现更有利可图的交易策略的能力。此外,基于价值和基于策略的RL代理之间没有显着的性能差异。演员批评者的表现比其他类型的药物更好。同样,在政策代理商方面的表现要好,因为它们在政策评估方面更好,样品效率在投资组合管理中并不是一个重大问题。这项研究表明,RL代理可以大大改善资产分配,因为它们的表现优于强基础。基于我们的分析,在政策上,参与者批评的RL药物显示出最大的希望。
translated by 谷歌翻译
从对量子网络和传感器的基本力量的超敏感探测器,机械谐振器能够在室温环境中实现下一代技术。目前,氮化硅纳米腔作为这些进步中的领先微芯片平台,允许机械谐振器从环境热噪声显着隔离的机械谐振器。然而,迄今为止,人类直觉仍然是设计过程背后的驱动力。这里,由自然启发和通过机器学习引导,开发了一种蜘蛛网纳米机械谐振器,其显示通过数据驱动优化算法发现的新颖“扭转软夹紧”机构从环境热环境中分离的振动模式。然后制造该生物启发的谐振器;通过在室温环境中通过高于10亿以上的机械师进行实验证实了新的范式。与其他最先进的谐振器相比,这种里程碑是通过紧凑的设计实现的,该设计不需要亚微米光刻特征或复声胶凝带,使得在大尺度上制造显着更容易和更便宜。在这里,我们展示了机器学习与人类直觉一起工作的能力,以增加创造性的可能性,并在计算和纳米技术中发现新的策略。
translated by 谷歌翻译
深度加强学习(RL)的最新进展导致许多2人零和游戏中的相当大的进展,如去,扑克和星际争霸。这种游戏的纯粹对抗性质允许概念上简单地应用R1方法。然而,现实世界的设置是许多代理商,代理交互是复杂的共同利益和竞争方面的混合物。我们认为外交,一个旨在突出由多种代理交互导致的困境的7人棋盘游戏。它还具有大型组合动作空间和同时移动,这对RL算法具有具有挑战性。我们提出了一个简单但有效的近似最佳响应操作员,旨在处理大型组合动作空间并同时移动。我们还介绍了一系列近似虚构游戏的政策迭代方法。通过这些方法,我们成功地将RL申请到外交:我们认为我们的代理商令人信服地令人信服地表明,游戏理论均衡分析表明新过程产生了一致的改进。
translated by 谷歌翻译
在化学厂的运行过程中,必须始终保持产品质量,并应最大程度地降低规范产品的生产。因此,必须测量与产品质量相关的过程变量,例如工厂各个部分的材料的温度和组成,并且必须根据测量结果进行适当的操作(即控制)。一些过程变量(例如温度和流速)可以连续,即时测量。但是,其他变量(例如成分和粘度)只能通过从植物中抽样物质后进行耗时的分析来获得。已经提出了软传感器,用于估算从易于测量变量实时获得的过程变量。但是,在未记录的情况下(推断),传统统计软传感器的估计精度(由记录的测量值构成)可能非常差。在这项研究中,我们通过使用动态模拟器来估算植物的内部状态变量,该模拟器可以根据化学工程知识和人工智能(AI)技术估算和预测未记录的情况,称为增强学习,并建议使用使用估计植物的内部状态变量作为软传感器。此外,我们描述了使用此类软传感器的植物操作和控制的前景以及为拟议系统获得必要的预测模型(即模拟器)的方法。
translated by 谷歌翻译
我们提出了一种新的四管齐下的方法,在文献中首次建立消防员的情境意识。我们构建了一系列深度学习框架,彼此之叠,以提高消防员在紧急首次响应设置中进行的救援任务的安全性,效率和成功完成。首先,我们使用深度卷积神经网络(CNN)系统,以实时地分类和识别来自热图像的感兴趣对象。接下来,我们将此CNN框架扩展了对象检测,跟踪,分割与掩码RCNN框架,以及具有多模级自然语言处理(NLP)框架的场景描述。第三,我们建立了一个深入的Q学习的代理,免受压力引起的迷失方向和焦虑,能够根据现场消防环境中观察和存储的事实来制定明确的导航决策。最后,我们使用了一种低计算无监督的学习技术,称为张量分解,在实时对异常检测进行有意义的特征提取。通过这些临时深度学习结构,我们建立了人工智能系统的骨干,用于消防员的情境意识。要将设计的系统带入消防员的使用,我们设计了一种物理结构,其中处理后的结果被用作创建增强现实的投入,这是一个能够建议他们所在地的消防员和周围的关键特征,这对救援操作至关重要在手头,以及路径规划功能,充当虚拟指南,以帮助迷彩的第一个响应者恢复安全。当组合时,这四种方法呈现了一种新颖的信息理解,转移和综合方法,这可能会大大提高消防员响应和功效,并降低寿命损失。
translated by 谷歌翻译
在过去的十年中,深入的强化学习(RL)已经取得了长足的进步。同时,最先进的RL算法在培训时间融合方面需要大量的计算预算。最近的工作已经开始通过量子计算的角度来解决这个问题,这有望为几项传统上的艰巨任务做出理论上的速度。在这项工作中,我们研究了一类混合量子古典RL算法,我们共同称为变异量子Q-NETWORKS(VQ-DQN)。我们表明,VQ-DQN方法受到导致学习政策分歧的不稳定性的约束,研究了基于经典模拟的既定结果的重复性,并执行系统的实验以识别观察到的不稳定性的潜在解释。此外,与大多数现有的量子增强学习中现有工作相反,我们在实际量子处理单元(IBM量子设备)上执行RL算法,并研究模拟和物理量子系统之间因实施不足而进行的行为差异。我们的实验表明,与文献中相反的主张相反,与经典方法相比,即使在没有物理缺陷的情况下进行模拟,也不能最终决定是否已知量子方法,也可以提供优势。最后,我们提供了VQ-DQN作为可再现的测试床的强大,通用且经过充分测试的实现,以实现未来的实验。
translated by 谷歌翻译