自动对象检测器的本地化质量通常通过联合(IOU)分数进行评估。在这项工作中,我们表明人类对本地化质量有不同的看法。为了评估这一点,我们对70多名参与者进行了调查。结果表明,对于以完全相同的评分而言,人类可能不会认为这些错误是相等的,并且表达了偏好。我们的工作是第一个与人类一起评估IOU的工作,并清楚地表明,仅依靠IOU分数来评估本地化错误可能还不够。
translated by 谷歌翻译
对象检测是一项基本视觉任务。它在学术界进行了高度研究,并在行业中广泛采用。平均精度(AP)是评估对象检测器的标准分数。但是,我们对该分数的微妙之处的理解是有限的。在这里,我们量化了AP对边界框扰动的敏感性,并表明AP对小型翻译非常敏感。只有一个像素移位足以将模型的地图降低8.4%。仅一个像素偏移的小物体上的地图掉落为23.1%。当使用地面真相(GT)框为预测时,相应的数字分别为23%和41.7%。这些结果解释了为什么随着模型变得更好,为什么实现更高的地图变得越来越困难。我们还研究了盒子缩放对AP的影响。代码和数据可从https://github.com/aliborji/ap_box_perturbation获得。
translated by 谷歌翻译
Confluence是对对象检测的边界框后处理中的非墨西哥抑制(NMS)替代的新型非交流(IOU)替代方案。它克服了基于IOU的NMS变体的固有局限性,以通过使用归一化的曼哈顿距离启发的接近度度量来表示边界框聚类的更稳定,一致的预测指标来表示边界框群集。与贪婪和柔软的NMS不同,它不仅依赖分类置信度得分来选择最佳边界框,而是选择与给定群集中最接近其他盒子的框并删除高度汇合的相邻框。在MS Coco和CrowdHuman基准测试中,汇合的平均精度最高2.3-3.8%,而平均召回率则与DEACTO标准和ART NMS NMS变体相比,平均召回率最高为5.3-7.2%。广泛的定性分析和阈值灵敏度分析实验支持了定量结果,这支持了结论,即汇合比NMS变体更健壮。 Confluence代表边界框处理中的范式变化,有可能在边界框回归过程中替换IOU。
translated by 谷歌翻译
流行的对象检测度量平均精度(3D AP)依赖于预测的边界框和地面真相边界框之间的结合。但是,基于摄像机的深度估计的精度有限,这可能会导致其他合理的预测,这些预测遭受了如此纵向定位错误,被视为假阳性和假阴性。因此,我们提出了流行的3D AP指标的变体,这些变体旨在在深度估计误差方面更具允许性。具体而言,我们新颖的纵向误差耐受度指标,Let-3D-AP和Let-3D-APL,允许预测的边界框的纵向定位误差,最高为给定的公差。所提出的指标已在Waymo Open DataSet 3D摄像头仅检测挑战中使用。我们认为,它们将通过提供更有信息的性能信号来促进仅相机3D检测领域的进步。
translated by 谷歌翻译
作为现代深度学习框架的静态计算图的一部分,评估可可平均平均精度(MAP)和可可召回指标会带来一系列独特的挑战。这些挑战包括需要保持动态大小的状态以计算平均平均精度,对全局数据集级别统计数据计算指标的依赖,以及管理批次中图像之间的边界框不同的数量。结果,研究人员和从业人员将可可指标评估为培训后评估步骤是普遍的实践。使用图形友好的算法来计算可可平均的平均精度和回忆,可以在训练时间评估这些指标,从而提高通过训练曲线图的指标演变的可见性,并在原型进行新模型版本时降低迭代时间。我们的贡献包括平均平均精度的准确近似算法,可可平均平均精度和可可召回的开源实现,广泛的数值基准测试以验证我们实施的准确性以及包括火车时间评估的开源培训循环平均平均精度和回忆。
translated by 谷歌翻译
Modern CNN-based object detectors rely on bounding box regression and non-maximum suppression to localize objects. While the probabilities for class labels naturally reflect classification confidence, localization confidence is absent. This makes properly localized bounding boxes degenerate during iterative regression or even suppressed during NMS. In the paper we propose IoU-Net learning to predict the IoU between each detected bounding box and the matched ground-truth. The network acquires this confidence of localization, which improves the NMS procedure by preserving accurately localized bounding boxes. Furthermore, an optimization-based bounding box refinement method is proposed, where the predicted IoU is formulated as the objective. Extensive experiments on the MS-COCO dataset show the effectiveness of IoU-Net, as well as its compatibility with and adaptivity to several state-of-the-art object detectors.
translated by 谷歌翻译
在本文中,我们通过将无线电信息结合到最先进的检测方法中提出了一种无线电辅助人类检测框架,包括基于锚的oneStage检测器和两级检测器。我们从无线电信号中提取无线电定位和标识符信息以帮助人类检测,由于哪种错误阳性和假否定的问题可能会大大缓解。对于两个探测器,我们使用基于无线电定位的置信度评分修订来提高检测性能。对于两级检测方法,我们建议利用无线电定位产生的区域提案,而不是依赖于区域提案网络(RPN)。此外,利用无线电标识符信息,还提出了具有无线电定位约束的非最大抑制方法,以进一步抑制假检测并减少错过的检测。模拟Microsoft Coco DataSet和CALTECH步行数据集的实验表明,借助无线电信息可以改善平均平均精度(地图)和最先进的检测方法的错过率。最后,我们在现实世界的情况下进行实验,以展示我们在实践中的提出方法的可行性。
translated by 谷歌翻译
How would you fairly evaluate two multi-object tracking algorithms (i.e. trackers), each one employing a different object detector? Detectors keep improving, thus trackers can make less effort to estimate object states over time. Is it then fair to compare a new tracker employing a new detector with another tracker using an old detector? In this paper, we propose a novel performance measure, named Tracking Effort Measure (TEM), to evaluate trackers that use different detectors. TEM estimates the improvement that the tracker does with respect to its input data (i.e. detections) at frame level (intra-frame complexity) and sequence level (inter-frame complexity). We evaluate TEM over well-known datasets, four trackers and eight detection sets. Results show that, unlike conventional tracking evaluation measures, TEM can quantify the effort done by the tracker with a reduced correlation on the input detections. Its implementation is publicly available online at https://github.com/vpulab/MOT-evaluation.
translated by 谷歌翻译
在本文中,我们评估了域转移对训练集外部数据外的数据的培训的人类检测模型的影响领域。具体而言,我们使用Robotti平台在农业机器人应用程序的背景下收集的现场数据集中介绍了Opendr人类,从而可以定量测量此类应用程序中域移动的影响。此外,我们通过评估有关训练数据的三种不同的情况来研究手动注释的重要性:a)仅消极样本,即没有描绘的人,b)仅阳性样本,即仅包含人类的图像,而c)既负面c)。和阳性样品。我们的结果表明,即使仅使用负样本,即使对训练过程进行了额外的考虑,也可以达到良好的性能。我们还发现,阳性样品会提高性能,尤其是在更好的本地化方面。该数据集可在https://github.com/opendr-eu/datasets上公开下载。
translated by 谷歌翻译
数字农业的现代趋势已经转向人工智能,以进行农作物质量评估和产量估计。在这项工作中,我们记录了如何使用参数调谐的单弹对象检测算法来识别和计算来自空中无人机图像的高粱头。我们的方法涉及一项新颖的探索性分析,该分析确定了高粱图像的关键结构元素,并激发了参数调节的锚盒的选择,这些锚盒对性能产生了重大贡献。这些见解导致了一个深度学习模型的发展,该模型胜过基线模型,并达到了样本外平均平均精度为0.95。
translated by 谷歌翻译
全球城市可免费获得大量的地理参考全景图像,以及各种各样的城市物体上的位置和元数据的详细地图。它们提供了有关城市物体的潜在信息来源,但是对象检测的手动注释是昂贵,费力和困难的。我们可以利用这种多媒体来源自动注释街道级图像作为手动标签的廉价替代品吗?使用Panorams框架,我们引入了一种方法,以根据城市上下文信息自动生成全景图像的边界框注释。遵循这种方法,我们仅以快速自动的方式从开放数据源中获得了大规模的(尽管嘈杂,但都嘈杂,但对城市数据集进行了注释。该数据集涵盖了阿姆斯特丹市,其中包括771,299张全景图像中22个对象类别的1400万个嘈杂的边界框注释。对于许多对象,可以从地理空间元数据(例如建筑价值,功能和平均表面积)获得进一步的细粒度信息。这样的信息将很难(即使不是不可能)单独根据图像来获取。为了进行详细评估,我们引入了一个有效的众包协议,用于在全景图像中进行边界框注释,我们将其部署以获取147,075个地面真实对象注释,用于7,348张图像的子集,Panorams-clean数据集。对于我们的Panorams-Noisy数据集,我们对噪声以及不同类型的噪声如何影响图像分类和对象检测性能提供了广泛的分析。我们可以公开提供数据集,全景噪声和全景清洁,基准和工具。
translated by 谷歌翻译
在对象检测中,当检测器未能检测到目标对象时,会出现假阴性。为了了解为什么对象检测产生假阴性,我们确定了五个“假负机制”,其中每个机制都描述了检测器体系结构内部的特定组件如何失败。着眼于两阶段和一阶段锚点对象检测器体系结构,我们引入了一个框架,用于量化这些虚假的负面机制。使用此框架,我们调查了为什么更快的R-CNN和视网膜无法检测基准视觉数据集和机器人数据集中的对象。我们表明,检测器的假负机制在计算机视觉基准数据集和机器人部署方案之间存在显着差异。这对为机器人应用程序开发的对象检测器的翻译具有影响。
translated by 谷歌翻译
Non-maximum suppression is an integral part of the object detection pipeline. First, it sorts all detection boxes on the basis of their scores. The detection box M with the maximum score is selected and all other detection boxes with a significant overlap (using a pre-defined threshold) with M are suppressed. This process is recursively applied on the remaining boxes. As per the design of the algorithm, if an object lies within the predefined overlap threshold, it leads to a miss. To this end, we propose Soft-NMS, an algorithm which decays the detection scores of all other objects as a continuous function of their overlap with M. Hence, no object is eliminated in this process. Soft-NMS obtains consistent improvements for the coco-style mAP metric on standard datasets like PASCAL VOC 2007 (1.7% for both R-FCN and Faster-RCNN) and MS-COCO (1.3% for R-FCN and 1.1% for Faster-RCNN) by just changing the NMS algorithm without any additional hyper-parameters. UsingDeformable-RFCN, Soft-NMS improves state-of-the-art in object detection from 39.8% to 40.9% with a single model. Further, the computational complexity of Soft-NMS is the same as traditional NMS and hence it can be efficiently implemented. Since Soft-NMS does not require any extra training and is simple to implement, it can be easily integrated into any object detection pipeline. Code for Soft-NMS is publicly available on GitHub http://bit.ly/ 2nJLNMu.
translated by 谷歌翻译
State-of-the-art object detectors are treated as black boxes due to their highly non-linear internal computations. Even with unprecedented advancements in detector performance, the inability to explain how their outputs are generated limits their use in safety-critical applications. Previous work fails to produce explanations for both bounding box and classification decisions, and generally make individual explanations for various detectors. In this paper, we propose an open-source Detector Explanation Toolkit (DExT) which implements the proposed approach to generate a holistic explanation for all detector decisions using certain gradient-based explanation methods. We suggests various multi-object visualization methods to merge the explanations of multiple objects detected in an image as well as the corresponding detections in a single image. The quantitative evaluation show that the Single Shot MultiBox Detector (SSD) is more faithfully explained compared to other detectors regardless of the explanation methods. Both quantitative and human-centric evaluations identify that SmoothGrad with Guided Backpropagation (GBP) provides more trustworthy explanations among selected methods across all detectors. We expect that DExT will motivate practitioners to evaluate object detectors from the interpretability perspective by explaining both bounding box and classification decisions.
translated by 谷歌翻译
We propose a fully convolutional one-stage object detector (FCOS) to solve object detection in a per-pixel prediction fashion, analogue to semantic segmentation. Almost all state-of-the-art object detectors such as RetinaNet, SSD, YOLOv3, and Faster R-CNN rely on pre-defined anchor boxes. In contrast, our proposed detector FCOS is anchor box free, as well as proposal free. By eliminating the predefined set of anchor boxes, FCOS completely avoids the complicated computation related to anchor boxes such as calculating overlapping during training. More importantly, we also avoid all hyper-parameters related to anchor boxes, which are often very sensitive to the final detection performance. With the only post-processing non-maximum suppression (NMS), FCOS with ResNeXt-64x4d-101 achieves 44.7% in AP with single-model and single-scale testing, surpassing previous one-stage detectors with the advantage of being much simpler. For the first time, we demonstrate a much simpler and flexible detection framework achieving improved detection accuracy. We hope that the proposed FCOS framework can serve as a simple and strong alternative for many other instance-level tasks. Code is available at:tinyurl.com/FCOSv1
translated by 谷歌翻译
In object detection, keypoint-based approaches often suffer a large number of incorrect object bounding boxes, arguably due to the lack of an additional look into the cropped regions. This paper presents an efficient solution which explores the visual patterns within each cropped region with minimal costs. We build our framework upon a representative one-stage keypoint-based detector named Corner-Net. Our approach, named CenterNet, detects each object as a triplet, rather than a pair, of keypoints, which improves both precision and recall. Accordingly, we design two customized modules named cascade corner pooling and center pooling, which play the roles of enriching information collected by both top-left and bottom-right corners and providing more recognizable information at the central regions, respectively. On the MS-COCO dataset, CenterNet achieves an AP of 47.0%, which outperforms all existing one-stage detectors by at least 4.9%. Meanwhile, with a faster inference speed, CenterNet demonstrates quite comparable performance to the top-ranked two-stage detectors. Code is available at https://github.com/ Duankaiwen/CenterNet.
translated by 谷歌翻译
Intersection over Union (IoU) is the most popular evaluation metric used in the object detection benchmarks. However, there is a gap between optimizing the commonly used distance losses for regressing the parameters of a bounding box and maximizing this metric value. The optimal objective for a metric is the metric itself. In the case of axisaligned 2D bounding boxes, it can be shown that IoU can be directly used as a regression loss. However, IoU has a plateau making it infeasible to optimize in the case of nonoverlapping bounding boxes. In this paper, we address the weaknesses of IoU by introducing a generalized version as both a new loss and a new metric. By incorporating this generalized IoU (GIoU ) as a loss into the state-of-the art object detection frameworks, we show a consistent improvement on their performance using both the standard, IoU based, and new, GIoU based, performance measures on popular object detection benchmarks such as PASCAL VOC and MS COCO.
translated by 谷歌翻译
We present YOLO, a new approach to object detection. Prior work on object detection repurposes classifiers to perform detection. Instead, we frame object detection as a regression problem to spatially separated bounding boxes and associated class probabilities. A single neural network predicts bounding boxes and class probabilities directly from full images in one evaluation. Since the whole detection pipeline is a single network, it can be optimized end-to-end directly on detection performance.Our unified architecture is extremely fast. Our base YOLO model processes images in real-time at 45 frames per second. A smaller version of the network, Fast YOLO, processes an astounding 155 frames per second while still achieving double the mAP of other real-time detectors. Compared to state-of-the-art detection systems, YOLO makes more localization errors but is less likely to predict false positives on background. Finally, YOLO learns very general representations of objects. It outperforms other detection methods, including DPM and R-CNN, when generalizing from natural images to other domains like artwork.
translated by 谷歌翻译
空中无人机镜头的视觉检查是当今土地搜索和救援(SAR)运营的一个组成部分。由于此检查是对人类的缓慢而繁琐,令人疑惑的工作,我们提出了一种新颖的深入学习算法来自动化该航空人员检测(APD)任务。我们试验模型架构选择,在线数据增强,转移学习,图像平铺和其他几种技术,以提高我们方法的测试性能。我们将新型航空检验视网膜(空气)算法呈现为这些贡献的结合。空中探测器在精度(〜21个百分点增加)和速度方面,在常用的SAR测试数据上表现出最先进的性能。此外,我们为SAR任务中的APD问题提供了新的正式定义。也就是说,我们提出了一种新的评估方案,在现实世界SAR本地化要求方面排名探测器。最后,我们提出了一种用于稳健的新型后处理方法,近似对象定位:重叠边界框(MOB)算法的合并。在空中检测器中使用的最终处理阶段在真实的空中SAR任务面前显着提高了其性能和可用性。
translated by 谷歌翻译
现代领先的物体探测器是从深层CNN的骨干分类器网络重新批准的两阶段或一级网络。YOLOV3是一种这样的非常熟知的最新状态单次检测器,其采用输入图像并将其划分为相等大小的网格矩阵。具有物体中心的网格单元是负责检测特定对象的电池。本文介绍了一种新的数学方法,为准确紧密绑定函数预测分配每个对象的多个网格。我们还提出了一个有效的离线拷贝粘贴数据增强,用于对象检测。我们提出的方法显着优于一些现有的对象探测器,具有进一步更好的性能的前景。
translated by 谷歌翻译