现代领先的物体探测器是从深层CNN的骨干分类器网络重新批准的两阶段或一级网络。YOLOV3是一种这样的非常熟知的最新状态单次检测器,其采用输入图像并将其划分为相等大小的网格矩阵。具有物体中心的网格单元是负责检测特定对象的电池。本文介绍了一种新的数学方法,为准确紧密绑定函数预测分配每个对象的多个网格。我们还提出了一个有效的离线拷贝粘贴数据增强,用于对象检测。我们提出的方法显着优于一些现有的对象探测器,具有进一步更好的性能的前景。
translated by 谷歌翻译
We present YOLO, a new approach to object detection. Prior work on object detection repurposes classifiers to perform detection. Instead, we frame object detection as a regression problem to spatially separated bounding boxes and associated class probabilities. A single neural network predicts bounding boxes and class probabilities directly from full images in one evaluation. Since the whole detection pipeline is a single network, it can be optimized end-to-end directly on detection performance.Our unified architecture is extremely fast. Our base YOLO model processes images in real-time at 45 frames per second. A smaller version of the network, Fast YOLO, processes an astounding 155 frames per second while still achieving double the mAP of other real-time detectors. Compared to state-of-the-art detection systems, YOLO makes more localization errors but is less likely to predict false positives on background. Finally, YOLO learns very general representations of objects. It outperforms other detection methods, including DPM and R-CNN, when generalizing from natural images to other domains like artwork.
translated by 谷歌翻译
我们提出对象盒,这是一种新颖的单阶段锚定且高度可推广的对象检测方法。与现有的基于锚固的探测器和无锚的探测器相反,它们更偏向于其标签分配中的特定对象量表,我们仅将对象中心位置用作正样本,并在不同的特征级别中平均处理所有对象,而不论对象'尺寸或形状。具体而言,我们的标签分配策略将对象中心位置视为形状和尺寸不足的锚定,并以无锚固的方式锚定,并允许学习每个对象的所有尺度。为了支持这一点,我们将新的回归目标定义为从中心单元位置的两个角到边界框的四个侧面的距离。此外,为了处理比例变化的对象,我们提出了一个量身定制的损失来处理不同尺寸的盒子。结果,我们提出的对象检测器不需要在数据集中调整任何依赖数据集的超参数。我们在MS-Coco 2017和Pascal VOC 2012数据集上评估了我们的方法,并将我们的结果与最先进的方法进行比较。我们观察到,与先前的作品相比,对象盒的性能优惠。此外,我们执行严格的消融实验来评估我们方法的不同组成部分。我们的代码可在以下网址提供:https://github.com/mohsenzand/objectbox。
translated by 谷歌翻译
We present a method for detecting objects in images using a single deep neural network. Our approach, named SSD, discretizes the output space of bounding boxes into a set of default boxes over different aspect ratios and scales per feature map location. At prediction time, the network generates scores for the presence of each object category in each default box and produces adjustments to the box to better match the object shape. Additionally, the network combines predictions from multiple feature maps with different resolutions to naturally handle objects of various sizes. SSD is simple relative to methods that require object proposals because it completely eliminates proposal generation and subsequent pixel or feature resampling stages and encapsulates all computation in a single network. This makes SSD easy to train and straightforward to integrate into systems that require a detection component. Experimental results on the PASCAL VOC, COCO, and ILSVRC datasets confirm that SSD has competitive accuracy to methods that utilize an additional object proposal step and is much faster, while providing a unified framework for both training and inference. For 300 × 300 input, SSD achieves 74.3% mAP 1 on VOC2007 test at 59 FPS on a Nvidia Titan X and for 512 × 512 input, SSD achieves 76.9% mAP, outperforming a comparable state-of-the-art Faster R-CNN model. Compared to other single stage methods, SSD has much better accuracy even with a smaller input image size. Code is available at: https://github.com/weiliu89/caffe/tree/ssd .
translated by 谷歌翻译
We introduce YOLO9000, a state-of-the-art, real-time object detection system that can detect over 9000 object categories. First we propose various improvements to the YOLO detection method, both novel and drawn from prior work. The improved model, YOLOv2, is state-of-the-art on standard detection tasks like PASCAL VOC and COCO. Using a novel, multi-scale training method the same YOLOv2 model can run at varying sizes, offering an easy tradeoff between speed and accuracy. At 67 FPS, YOLOv2 gets 76.8 mAP on VOC 2007. At 40 FPS, YOLOv2 gets 78.6 mAP, outperforming state-of-the-art methods like Faster R-CNN with ResNet and SSD while still running significantly faster. Finally we propose a method to jointly train on object detection and classification. Using this method we train YOLO9000 simultaneously on the COCO detection dataset and the ImageNet classification dataset. Our joint training allows YOLO9000 to predict detections for object classes that don't have labelled detection data. We validate our approach on the ImageNet detection task. YOLO9000 gets 19.7 mAP on the ImageNet detection validation set despite only having detection data for 44 of the 200 classes. On the 156 classes not in COCO, YOLO9000 gets 16.0 mAP. But YOLO can detect more than just 200 classes; it predicts detections for more than 9000 different object categories. And it still runs in real-time.
translated by 谷歌翻译
现在,诸如无人机之类的无人机,从捕获和目标检测的各种目的中,从Ariel Imagery等捕获和目标检测的各种目的很大使用。轻松进入这些小的Ariel车辆到公众可能导致严重的安全威胁。例如,可以通过使用无人机在公共公共场合中混合的间谍来监视关键位置。在手中研究提出了一种改进和高效的深度学习自治系统,可以以极大的精度检测和跟踪非常小的无人机。建议的系统由自定义深度学习模型Tiny Yolov3组成,其中一个非常快速的物体检测模型的口味之一,您只能构建并用于检测一次(YOLO)。物体检测算法将有效地检测无人机。与以前的Yolo版本相比,拟议的架构表现出显着更好的性能。在资源使用和时间复杂性方面观察到改进。使用召回和精度分别为93%和91%的测量来测量性能。
translated by 谷歌翻译
In object detection, keypoint-based approaches often suffer a large number of incorrect object bounding boxes, arguably due to the lack of an additional look into the cropped regions. This paper presents an efficient solution which explores the visual patterns within each cropped region with minimal costs. We build our framework upon a representative one-stage keypoint-based detector named Corner-Net. Our approach, named CenterNet, detects each object as a triplet, rather than a pair, of keypoints, which improves both precision and recall. Accordingly, we design two customized modules named cascade corner pooling and center pooling, which play the roles of enriching information collected by both top-left and bottom-right corners and providing more recognizable information at the central regions, respectively. On the MS-COCO dataset, CenterNet achieves an AP of 47.0%, which outperforms all existing one-stage detectors by at least 4.9%. Meanwhile, with a faster inference speed, CenterNet demonstrates quite comparable performance to the top-ranked two-stage detectors. Code is available at https://github.com/ Duankaiwen/CenterNet.
translated by 谷歌翻译
State-of-the-art object detection networks depend on region proposal algorithms to hypothesize object locations. Advances like SPPnet [1] and Fast R-CNN [2] have reduced the running time of these detection networks, exposing region proposal computation as a bottleneck. In this work, we introduce a Region Proposal Network (RPN) that shares full-image convolutional features with the detection network, thus enabling nearly cost-free region proposals. An RPN is a fully convolutional network that simultaneously predicts object bounds and objectness scores at each position. The RPN is trained end-to-end to generate high-quality region proposals, which are used by Fast R-CNN for detection. We further merge RPN and Fast R-CNN into a single network by sharing their convolutional features-using the recently popular terminology of neural networks with "attention" mechanisms, the RPN component tells the unified network where to look. For the very deep VGG-16 model [3], our detection system has a frame rate of 5fps (including all steps) on a GPU, while achieving state-of-the-art object detection accuracy on PASCAL VOC 2007, 2012, and MS COCO datasets with only 300 proposals per image. In ILSVRC and COCO 2015 competitions, Faster R-CNN and RPN are the foundations of the 1st-place winning entries in several tracks. Code has been made publicly available.
translated by 谷歌翻译
深神网络的对象探测器正在不断发展,并用于多种应用程序,每个应用程序都有自己的要求集。尽管关键安全应用需要高准确性和可靠性,但低延迟任务需要资源和节能网络。不断提出了实时探测器,在高影响现实世界中是必需的,但是它们过分强调了准确性和速度的提高,而其他功能(例如多功能性,鲁棒性,资源和能源效率)则被省略。现有网络的参考基准不存在,设计新网络的标准评估指南也不存在,从而导致比较模棱两可和不一致的比较。因此,我们对广泛的数据集进行了多个实时探测器(基于锚点,关键器和变压器)的全面研究,并报告了一系列广泛指标的结果。我们还研究了变量,例如图像大小,锚固尺寸,置信阈值和架构层对整体性能的影响。我们分析了检测网络的鲁棒性,以防止分配变化,自然腐败和对抗性攻击。此外,我们提供了校准分析来评估预测的可靠性。最后,为了强调现实世界的影响,我们对自动驾驶和医疗保健应用进行了两个独特的案例研究。为了进一步衡量关键实时应用程序中网络的能力,我们报告了在Edge设备上部署检测网络后的性能。我们广泛的实证研究可以作为工业界对现有网络做出明智选择的指南。我们还希望激发研究社区的设计和评估网络的新方向,该网络着重于更大而整体的概述,以实现深远的影响。
translated by 谷歌翻译
物体检测通常需要在现代深度学习方法中基于传统或锚盒的滑动窗口分类器。但是,这些方法中的任何一个都需要框中的繁琐配置。在本文中,我们提供了一种新的透视图,其中检测对象被激励为高电平语义特征检测任务。与边缘,角落,斑点和其他特征探测器一样,所提出的探测器扫描到全部图像的特征点,卷积自然适合该特征点。但是,与这些传统的低级功能不同,所提出的探测器用于更高级别的抽象,即我们正在寻找有物体的中心点,而现代深层模型已经能够具有如此高级别的语义抽象。除了Blob检测之外,我们还预测了中心点的尺度,这也是直接的卷积。因此,在本文中,通过卷积简化了行人和面部检测作为直接的中心和规模预测任务。这样,所提出的方法享有一个无盒设置。虽然结构简单,但它对几个具有挑战性的基准呈现竞争准确性,包括行人检测和面部检测。此外,执行交叉数据集评估,证明所提出的方法的卓越泛化能力。可以访问代码和模型(https://github.com/liuwei16/csp和https://github.com/hasanirtiza/pedestron)。
translated by 谷歌翻译
We propose CornerNet, a new approach to object detection where we detect an object bounding box as a pair of keypoints, the top-left corner and the bottom-right corner, using a single convolution neural network. By detecting objects as paired keypoints, we eliminate the need for designing a set of anchor boxes commonly used in prior single-stage detectors. In addition to our novel formulation, we introduce corner pooling, a new type of pooling layer that helps the network better localize corners. Experiments show that Corner-Net achieves a 42.2% AP on MS COCO, outperforming all existing one-stage detectors.
translated by 谷歌翻译
在诸如人类姿态估计的关键点估计任务中,尽管具有显着缺点,但基于热线的回归是主要的方法:Heatmaps本质上遭受量化误差,并且需要过多的计算来产生和后处理。有动力寻找更有效的解决方案,我们提出了一种新的热映射无关声点估计方法,其中各个关键点和空间相关的关键点(即,姿势)被建模为基于密集的单级锚的检测框架内的对象。因此,我们将我们的方法Kapao(发音为“KA-Pow!”)对于关键点并作为对象构成。我们通过同时检测人姿势对象和关键点对象并融合检测来利用两个对象表示的强度来将Kapao应用于单阶段多人人类姿势估算问题。在实验中,我们观察到Kapao明显比以前的方法更快,更准确,这极大地来自热爱处理后处理。此外,在不使用测试时间增强时,精度速度折衷特别有利。我们的大型型号Kapao-L在Microsoft Coco Keypoints验证集上实现了70.6的AP,而无需测试时增强,其比下一个最佳单级模型更准确,4.0 AP更准确。此外,Kapao在重闭塞的存在下擅长。在繁荣试验套上,Kapao-L为一个单级方法实现新的最先进的准确性,AP为68.9。
translated by 谷歌翻译
尽管Yolov2方法在对象检测时非常快,但由于其骨干网络的性能较低和多尺度区域特征的缺乏,其检测准确性受到限制。因此,在本文中提出了一种基于Yolov2的Yolo(DC)Yolo(DC-SPP-YOLO)方法的密集连接(DC)和空间金字塔池(SPP)方法。具体而言,在Yolov2的骨干网络中采用了卷积层的密集连接,以增强特征提取并减轻消失的梯度问题。此外,引入了改进的空间金字塔池以池并加入多尺度区域特征,以便网络可以更全面地学习对象功能。 DC-SPP-YOLO模型是根据由MSE(均方误差)损耗和跨透镜损失组成的新损失函数建立和训练的。实验结果表明,DC-SPP-Yolo的地图(平均平均精度)高于Pascal VOC数据集和UA-Detrac数据集上的Yolov2。提出了DC-SPP-Yolo方法的有效性。
translated by 谷歌翻译
在现代探测器中,默认使用四变独立回归定位损耗,如平滑 - $ \ ell_1 $丢失。然而,这种损失超薄了,使其与联盟(iou)的最终评估度量,交叉口不一致。直接采用标准IOU也不是不可行的,因为在非重叠盒的情况下的恒定零高原和最小值的非零梯度可能使其不可培养。因此,我们提出了一种解决这些问题的系统方法。首先,我们提出了一个新的公制,延伸的iou(eiou),当两个盒子没有重叠时,它是良好的定义,当重叠时,它是不重叠的并且减少到标准iou。其次,我们介绍了凸化技术(CT)以在EIOU的基础上构建损失,这可以保证梯度最小为零。第三,我们提出了一种稳定的优化技术(SOT),使分数欧盟损失更加稳定,平稳地接近最低。第四,为了充分利用基于EIOO的损失的能力,我们引入了一个相互关联的iou预测头,以进一步提升本地化准确性。通过拟议的贡献,新方法与Reset50 + FPN的备用R-CNN掺入,作为骨干收益率\ TextBF {4.2 Map} Gain on Voc2007和Coco2017上的基准下滑 - $ \ ell_1 $损失,几乎\ textbf {没有培训和推理计算成本}。具体而言,度量标准更长的是,增益越令人显着,在Coco2017上的VOC2007和\ TextBF {5.4 MAP}上越突出,可以在Coco2017上以公式$ AP_ {90} $。
translated by 谷歌翻译
Out-of-distribution (OOD) detection has attracted a large amount of attention from the machine learning research community in recent years due to its importance in deployed systems. Most of the previous studies focused on the detection of OOD samples in the multi-class classification task. However, OOD detection in the multi-label classification task remains an underexplored domain. In this research, we propose YolOOD - a method that utilizes concepts from the object detection domain to perform OOD detection in the multi-label classification task. Object detection models have an inherent ability to distinguish between objects of interest (in-distribution) and irrelevant objects (e.g., OOD objects) on images that contain multiple objects from different categories. These abilities allow us to convert a regular object detection model into an image classifier with inherent OOD detection capabilities with just minor changes. We compare our approach to state-of-the-art OOD detection methods and demonstrate YolOOD's ability to outperform these methods on a comprehensive suite of in-distribution and OOD benchmark datasets.
translated by 谷歌翻译
The detection of human body and its related parts (e.g., face, head or hands) have been intensively studied and greatly improved since the breakthrough of deep CNNs. However, most of these detectors are trained independently, making it a challenging task to associate detected body parts with people. This paper focuses on the problem of joint detection of human body and its corresponding parts. Specifically, we propose a novel extended object representation that integrates the center location offsets of body or its parts, and construct a dense single-stage anchor-based Body-Part Joint Detector (BPJDet). Body-part associations in BPJDet are embedded into the unified representation which contains both the semantic and geometric information. Therefore, BPJDet does not suffer from error-prone association post-matching, and has a better accuracy-speed trade-off. Furthermore, BPJDet can be seamlessly generalized to jointly detect any body part. To verify the effectiveness and superiority of our method, we conduct extensive experiments on the CityPersons, CrowdHuman and BodyHands datasets. The proposed BPJDet detector achieves state-of-the-art association performance on these three benchmarks while maintains high accuracy of detection. Code will be released to facilitate further studies.
translated by 谷歌翻译
复杂的水下环境为物体检测带来了新的挑战,例如未平衡的光条件,低对比度,阻塞和水生生物的模仿。在这种情况下,水下相机捕获的物体将变得模糊,并且通用探测器通常会在这些模糊的物体上失败。这项工作旨在从两个角度解决问题:不确定性建模和艰难的例子采矿。我们提出了一个名为Boosting R-CNN的两阶段水下检测器,该检测器包括三个关键组件。首先,提出了一个名为RetinArpn的新区域建议网络,该网络提供了高质量的建议,并考虑了对象和IOU预测,以确定对象事先概率的不确定性。其次,引入了概率推理管道,以结合第一阶段的先验不确定性和第二阶段分类评分,以模拟最终检测分数。最后,我们提出了一种名为Boosting Reweighting的新的硬示例挖掘方法。具体而言,当区域提案网络误认为样品的对象的事先概率时,提高重新加权将在训练过程中增加R-CNN头部样品的分类损失,同时减少具有准确估计的先验的简易样品丢失。因此,可以在第二阶段获得强大的检测头。在推理阶段,R-CNN具有纠正第一阶段的误差以提高性能的能力。在两个水下数据集和两个通用对象检测数据集上进行的全面实验证明了我们方法的有效性和鲁棒性。
translated by 谷歌翻译
In object detection, the intersection over union (IoU) threshold is frequently used to define positives/negatives. The threshold used to train a detector defines its quality. While the commonly used threshold of 0.5 leads to noisy (low-quality) detections, detection performance frequently degrades for larger thresholds. This paradox of high-quality detection has two causes: 1) overfitting, due to vanishing positive samples for large thresholds, and 2) inference-time quality mismatch between detector and test hypotheses. A multi-stage object detection architecture, the Cascade R-CNN, composed of a sequence of detectors trained with increasing IoU thresholds, is proposed to address these problems. The detectors are trained sequentially, using the output of a detector as training set for the next. This resampling progressively improves hypotheses quality, guaranteeing a positive training set of equivalent size for all detectors and minimizing overfitting. The same cascade is applied at inference, to eliminate quality mismatches between hypotheses and detectors. An implementation of the Cascade R-CNN without bells or whistles achieves state-of-the-art performance on the COCO dataset, and significantly improves high-quality detection on generic and specific object detection datasets, including VOC, KITTI, CityPerson, and WiderFace. Finally, the Cascade R-CNN is generalized to instance segmentation, with nontrivial improvements over the Mask R-CNN. To facilitate future research, two implementations are made available at https://github.com/zhaoweicai/cascade-rcnn (Caffe) and https://github.com/zhaoweicai/Detectron-Cascade-RCNN (Detectron).
translated by 谷歌翻译
Object detection has been dominated by anchor-based detectors for several years. Recently, anchor-free detectors have become popular due to the proposal of FPN and Focal Loss. In this paper, we first point out that the essential difference between anchor-based and anchor-free detection is actually how to define positive and negative training samples, which leads to the performance gap between them. If they adopt the same definition of positive and negative samples during training, there is no obvious difference in the final performance, no matter regressing from a box or a point. This shows that how to select positive and negative training samples is important for current object detectors. Then, we propose an Adaptive Training Sample Selection (ATSS) to automatically select positive and negative samples according to statistical characteristics of object. It significantly improves the performance of anchor-based and anchor-free detectors and bridges the gap between them. Finally, we discuss the necessity of tiling multiple anchors per location on the image to detect objects. Extensive experiments conducted on MS COCO support our aforementioned analysis and conclusions. With the newly introduced ATSS, we improve stateof-the-art detectors by a large margin to 50.7% AP without introducing any overhead. The code is available at https://github.com/sfzhang15/ATSS.
translated by 谷歌翻译
translated by 谷歌翻译