Confluence是对对象检测的边界框后处理中的非墨西哥抑制(NMS)替代的新型非交流(IOU)替代方案。它克服了基于IOU的NMS变体的固有局限性,以通过使用归一化的曼哈顿距离启发的接近度度量来表示边界框聚类的更稳定,一致的预测指标来表示边界框群集。与贪婪和柔软的NMS不同,它不仅依赖分类置信度得分来选择最佳边界框,而是选择与给定群集中最接近其他盒子的框并删除高度汇合的相邻框。在MS Coco和CrowdHuman基准测试中,汇合的平均精度最高2.3-3.8%,而平均召回率则与DEACTO标准和ART NMS NMS变体相比,平均召回率最高为5.3-7.2%。广泛的定性分析和阈值灵敏度分析实验支持了定量结果,这支持了结论,即汇合比NMS变体更健壮。 Confluence代表边界框处理中的范式变化,有可能在边界框回归过程中替换IOU。
translated by 谷歌翻译
Non-maximum suppression is an integral part of the object detection pipeline. First, it sorts all detection boxes on the basis of their scores. The detection box M with the maximum score is selected and all other detection boxes with a significant overlap (using a pre-defined threshold) with M are suppressed. This process is recursively applied on the remaining boxes. As per the design of the algorithm, if an object lies within the predefined overlap threshold, it leads to a miss. To this end, we propose Soft-NMS, an algorithm which decays the detection scores of all other objects as a continuous function of their overlap with M. Hence, no object is eliminated in this process. Soft-NMS obtains consistent improvements for the coco-style mAP metric on standard datasets like PASCAL VOC 2007 (1.7% for both R-FCN and Faster-RCNN) and MS-COCO (1.3% for R-FCN and 1.1% for Faster-RCNN) by just changing the NMS algorithm without any additional hyper-parameters. UsingDeformable-RFCN, Soft-NMS improves state-of-the-art in object detection from 39.8% to 40.9% with a single model. Further, the computational complexity of Soft-NMS is the same as traditional NMS and hence it can be efficiently implemented. Since Soft-NMS does not require any extra training and is simple to implement, it can be easily integrated into any object detection pipeline. Code for Soft-NMS is publicly available on GitHub http://bit.ly/ 2nJLNMu.
translated by 谷歌翻译
In object detection, the intersection over union (IoU) threshold is frequently used to define positives/negatives. The threshold used to train a detector defines its quality. While the commonly used threshold of 0.5 leads to noisy (low-quality) detections, detection performance frequently degrades for larger thresholds. This paradox of high-quality detection has two causes: 1) overfitting, due to vanishing positive samples for large thresholds, and 2) inference-time quality mismatch between detector and test hypotheses. A multi-stage object detection architecture, the Cascade R-CNN, composed of a sequence of detectors trained with increasing IoU thresholds, is proposed to address these problems. The detectors are trained sequentially, using the output of a detector as training set for the next. This resampling progressively improves hypotheses quality, guaranteeing a positive training set of equivalent size for all detectors and minimizing overfitting. The same cascade is applied at inference, to eliminate quality mismatches between hypotheses and detectors. An implementation of the Cascade R-CNN without bells or whistles achieves state-of-the-art performance on the COCO dataset, and significantly improves high-quality detection on generic and specific object detection datasets, including VOC, KITTI, CityPerson, and WiderFace. Finally, the Cascade R-CNN is generalized to instance segmentation, with nontrivial improvements over the Mask R-CNN. To facilitate future research, two implementations are made available at https://github.com/zhaoweicai/cascade-rcnn (Caffe) and https://github.com/zhaoweicai/Detectron-Cascade-RCNN (Detectron).
translated by 谷歌翻译
Modern CNN-based object detectors rely on bounding box regression and non-maximum suppression to localize objects. While the probabilities for class labels naturally reflect classification confidence, localization confidence is absent. This makes properly localized bounding boxes degenerate during iterative regression or even suppressed during NMS. In the paper we propose IoU-Net learning to predict the IoU between each detected bounding box and the matched ground-truth. The network acquires this confidence of localization, which improves the NMS procedure by preserving accurately localized bounding boxes. Furthermore, an optimization-based bounding box refinement method is proposed, where the predicted IoU is formulated as the objective. Extensive experiments on the MS-COCO dataset show the effectiveness of IoU-Net, as well as its compatibility with and adaptivity to several state-of-the-art object detectors.
translated by 谷歌翻译
Intersection over Union (IoU) is the most popular evaluation metric used in the object detection benchmarks. However, there is a gap between optimizing the commonly used distance losses for regressing the parameters of a bounding box and maximizing this metric value. The optimal objective for a metric is the metric itself. In the case of axisaligned 2D bounding boxes, it can be shown that IoU can be directly used as a regression loss. However, IoU has a plateau making it infeasible to optimize in the case of nonoverlapping bounding boxes. In this paper, we address the weaknesses of IoU by introducing a generalized version as both a new loss and a new metric. By incorporating this generalized IoU (GIoU ) as a loss into the state-of-the art object detection frameworks, we show a consistent improvement on their performance using both the standard, IoU based, and new, GIoU based, performance measures on popular object detection benchmarks such as PASCAL VOC and MS COCO.
translated by 谷歌翻译
We aim to detect all instances of a category in an image and, for each instance, mark the pixels that belong to it. We call this task Simultaneous Detection and Segmentation (SDS). Unlike classical bounding box detection, SDS requires a segmentation and not just a box. Unlike classical semantic segmentation, we require individual object instances. We build on recent work that uses convolutional neural networks to classify category-independent region proposals (R-CNN [16]), introducing a novel architecture tailored for SDS. We then use category-specific, topdown figure-ground predictions to refine our bottom-up proposals. We show a 7 point boost (16% relative) over our baselines on SDS, a 5 point boost (10% relative) over state-of-the-art on semantic segmentation, and state-of-the-art performance in object detection. Finally, we provide diagnostic tools that unpack performance and provide directions for future work.
translated by 谷歌翻译
In object detection, an intersection over union (IoU) threshold is required to define positives and negatives. An object detector, trained with low IoU threshold, e.g. 0.5, usually produces noisy detections. However, detection performance tends to degrade with increasing the IoU thresholds. Two main factors are responsible for this: 1) overfitting during training, due to exponentially vanishing positive samples, and 2) inference-time mismatch between the IoUs for which the detector is optimal and those of the input hypotheses. A multi-stage object detection architecture, the Cascade R-CNN, is proposed to address these problems. It consists of a sequence of detectors trained with increasing IoU thresholds, to be sequentially more selective against close false positives. The detectors are trained stage by stage, leveraging the observation that the output of a detector is a good distribution for training the next higher quality detector. The resampling of progressively improved hypotheses guarantees that all detectors have a positive set of examples of equivalent size, reducing the overfitting problem. The same cascade procedure is applied at inference, enabling a closer match between the hypotheses and the detector quality of each stage. A simple implementation of the Cascade R-CNN is shown to surpass all single-model object detectors on the challenging COCO dataset. Experiments also show that the Cascade R-CNN is widely applicable across detector architectures, achieving consistent gains independently of the baseline detector strength. The code will be made available at https://github.com/zhaoweicai/cascade-rcnn.
translated by 谷歌翻译
空中无人机镜头的视觉检查是当今土地搜索和救援(SAR)运营的一个组成部分。由于此检查是对人类的缓慢而繁琐,令人疑惑的工作,我们提出了一种新颖的深入学习算法来自动化该航空人员检测(APD)任务。我们试验模型架构选择,在线数据增强,转移学习,图像平铺和其他几种技术,以提高我们方法的测试性能。我们将新型航空检验视网膜(空气)算法呈现为这些贡献的结合。空中探测器在精度(〜21个百分点增加)和速度方面,在常用的SAR测试数据上表现出最先进的性能。此外,我们为SAR任务中的APD问题提供了新的正式定义。也就是说,我们提出了一种新的评估方案,在现实世界SAR本地化要求方面排名探测器。最后,我们提出了一种用于稳健的新型后处理方法,近似对象定位:重叠边界框(MOB)算法的合并。在空中检测器中使用的最终处理阶段在真实的空中SAR任务面前显着提高了其性能和可用性。
translated by 谷歌翻译
我们提出对象盒,这是一种新颖的单阶段锚定且高度可推广的对象检测方法。与现有的基于锚固的探测器和无锚的探测器相反,它们更偏向于其标签分配中的特定对象量表,我们仅将对象中心位置用作正样本,并在不同的特征级别中平均处理所有对象,而不论对象'尺寸或形状。具体而言,我们的标签分配策略将对象中心位置视为形状和尺寸不足的锚定,并以无锚固的方式锚定,并允许学习每个对象的所有尺度。为了支持这一点,我们将新的回归目标定义为从中心单元位置的两个角到边界框的四个侧面的距离。此外,为了处理比例变化的对象,我们提出了一个量身定制的损失来处理不同尺寸的盒子。结果,我们提出的对象检测器不需要在数据集中调整任何依赖数据集的超参数。我们在MS-Coco 2017和Pascal VOC 2012数据集上评估了我们的方法,并将我们的结果与最先进的方法进行比较。我们观察到,与先前的作品相比,对象盒的性能优惠。此外,我们执行严格的消融实验来评估我们方法的不同组成部分。我们的代码可在以下网址提供:https://github.com/mohsenzand/objectbox。
translated by 谷歌翻译
The use of object proposals is an effective recent approach for increasing the computational efficiency of object detection. We propose a novel method for generating object bounding box proposals using edges. Edges provide a sparse yet informative representation of an image. Our main observation is that the number of contours that are wholly contained in a bounding box is indicative of the likelihood of the box containing an object. We propose a simple box objectness score that measures the number of edges that exist in the box minus those that are members of contours that overlap the box's boundary. Using efficient data structures, millions of candidate boxes can be evaluated in a fraction of a second, returning a ranked set of a few thousand top-scoring proposals. Using standard metrics, we show results that are significantly more accurate than the current state-of-the-art while being faster to compute. In particular, given just 1000 proposals we achieve over 96% object recall at overlap threshold of 0.5 and over 75% recall at the more challenging overlap of 0.7. Our approach runs in 0.25 seconds and we additionally demonstrate a near real-time variant with only minor loss in accuracy.
translated by 谷歌翻译
尽管广泛用作可视检测任务的性能措施,但平均精度(AP)In(i)的限制在反映了本地化质量,(ii)对其计算的设计选择的鲁棒性以及其对输出的适用性没有信心分数。 Panoptic质量(PQ),提出评估Panoptic Seationation(Kirillov等,2019)的措施,不会遭受这些限制,而是限于Panoptic Seationation。在本文中,我们提出了基于其本地化和分类质量的视觉检测器的平均匹配误差,提出了定位召回精度(LRP)误差。 LRP错误,最初仅为Oksuz等人进行对象检测。 (2018),不遭受上述限制,适用于所有视觉检测任务。我们还介绍了最佳LRP(OLRP)错误,因为通过置信区获得的最小LRP错误以评估视觉检测器并获得部署的最佳阈值。我们提供对AP和PQ的LRP误差的详细比较分析,并使用七个可视检测任务(即对象检测,关键点检测,实例分割,Panoptic分段,视觉关系检测,使用近100个最先进的视觉检测器零拍摄检测和广义零拍摄检测)使用10个数据集来统一地显示LRP误差提供比其对应物更丰富和更辨别的信息。可用的代码:https://github.com/kemaloksuz/lrp-error
translated by 谷歌翻译
The PASCAL Visual Object Classes (VOC) challenge is a benchmark in visual object category recognition and detection, providing the vision and machine learning communities with a standard dataset of images and annotation, and standard evaluation procedures. Organised annually from 2005 to present, the challenge and its associated dataset has become accepted as the benchmark for object detection.This paper describes the dataset and evaluation procedure. We review the state-of-the-art in evaluated methods for both classification and detection, analyse whether the methods are statistically different, what they are learning from the images (e.g. the object or its context), and what the methods find easy or confuse. The paper concludes with lessons learnt in the three year history of the challenge, and proposes directions for future improvement and extension.
translated by 谷歌翻译
在本文中,我们通过将无线电信息结合到最先进的检测方法中提出了一种无线电辅助人类检测框架,包括基于锚的oneStage检测器和两级检测器。我们从无线电信号中提取无线电定位和标识符信息以帮助人类检测,由于哪种错误阳性和假否定的问题可能会大大缓解。对于两个探测器,我们使用基于无线电定位的置信度评分修订来提高检测性能。对于两级检测方法,我们建议利用无线电定位产生的区域提案,而不是依赖于区域提案网络(RPN)。此外,利用无线电标识符信息,还提出了具有无线电定位约束的非最大抑制方法,以进一步抑制假检测并减少错过的检测。模拟Microsoft Coco DataSet和CALTECH步行数据集的实验表明,借助无线电信息可以改善平均平均精度(地图)和最先进的检测方法的错过率。最后,我们在现实世界的情况下进行实验,以展示我们在实践中的提出方法的可行性。
translated by 谷歌翻译
大多数物体检测方法通过使用非最大抑制(NMS)及其改进版本,如Soft-NMS获取对象,这是一个很长的历史记录,以删除冗余边界框。我们从三个方面挑战那些基于NMS的方法:1)具有最高置信度值的边界框可能不是具有与地面真理盒最大的重叠的真正积极。 2)冗余盒不仅需要抑制,而且对于那些真正的阳性也需要置信度。 3)不需要置信度值排序候选盒,以便可以实现完整的并行性。在本文中,通过信仰传播(BP)的启发,我们提出了置信沟集团(CP簇)来替换基于NMS的方法,这是完全并行化的,以及精度更好。在CP-Cluster中,我们借用BP的消息传递机制来惩罚冗余框,并以迭代方式同时增强真正的阳性直到收敛。我们通过将其应用于各种主流探测器,例如FasterRCNN,SSD,FCO,YOLOV3,YOLOV5,CENTERENET等实验,验证了CP-Cluster的有效性。在MS COCO上的实验表明,我们的插头和游戏方法没有再培训探测器,都能够稳步与基于NMS的方法相比,将分别从0.2到1.9的透明边距提高所有最先进模型的平均地图。源代码在https://github.com/shenyi0220/cp-cluster中获得
translated by 谷歌翻译
在现代探测器中,默认使用四变独立回归定位损耗,如平滑 - $ \ ell_1 $丢失。然而,这种损失超薄了,使其与联盟(iou)的最终评估度量,交叉口不一致。直接采用标准IOU也不是不可行的,因为在非重叠盒的情况下的恒定零高原和最小值的非零梯度可能使其不可培养。因此,我们提出了一种解决这些问题的系统方法。首先,我们提出了一个新的公制,延伸的iou(eiou),当两个盒子没有重叠时,它是良好的定义,当重叠时,它是不重叠的并且减少到标准iou。其次,我们介绍了凸化技术(CT)以在EIOU的基础上构建损失,这可以保证梯度最小为零。第三,我们提出了一种稳定的优化技术(SOT),使分数欧盟损失更加稳定,平稳地接近最低。第四,为了充分利用基于EIOO的损失的能力,我们引入了一个相互关联的iou预测头,以进一步提升本地化准确性。通过拟议的贡献,新方法与Reset50 + FPN的备用R-CNN掺入,作为骨干收益率\ TextBF {4.2 Map} Gain on Voc2007和Coco2017上的基准下滑 - $ \ ell_1 $损失,几乎\ textbf {没有培训和推理计算成本}。具体而言,度量标准更长的是,增益越令人显着,在Coco2017上的VOC2007和\ TextBF {5.4 MAP}上越突出,可以在Coco2017上以公式$ AP_ {90} $。
translated by 谷歌翻译
许多开放世界应用程序需要检测新的对象,但最先进的对象检测和实例分段网络在此任务中不屈服。关键问题在于他们假设没有任何注释的地区应被抑制为否定,这教导了将未经讨犯的对象视为背景的模型。为了解决这个问题,我们提出了一个简单但令人惊讶的强大的数据增强和培训方案,我们呼唤学习来检测每件事(LDET)。为避免抑制隐藏的对象,背景对象可见但未标记,我们粘贴在从原始图像的小区域采样的背景图像上粘贴带有的注释对象。由于仅对这种综合增强的图像培训遭受域名,我们将培训与培训分为两部分:1)培训区域分类和回归头在增强图像上,2)在原始图像上训练掩模头。通过这种方式,模型不学习将隐藏对象作为背景分类,同时概括到真实图像。 LDET导致开放式世界实例分割任务中的许多数据集的重大改进,表现出CoCo上的交叉类别概括的基线,以及对UVO和城市的交叉数据集评估。
translated by 谷歌翻译
弱监督的对象检测(WSOD)是一项任务,可使用仅在图像级注释上训练的模型来检测图像中的对象。当前的最新模型受益于自我监督的实例级别的监督,但是由于弱监督不包括计数或位置信息,因此最常见的``Argmax''标签方法通常忽略了许多对象实例。为了减轻此问题,我们提出了一种新颖的多个实例标记方法,称为对象发现。我们进一步在弱监督下引入了新的对比损失,在该监督下,没有实例级信息可用于采样,称为弱监督对比损失(WSCL)。WSCL旨在通过利用一致的功能来嵌入同一类中的向量来构建对象发现的可靠相似性阈值。结果,我们在2014年和2017年MS-Coco以及Pascal VOC 2012上取得了新的最新结果,并在Pascal VOC 2007上取得了竞争成果。
translated by 谷歌翻译
作为现代深度学习框架的静态计算图的一部分,评估可可平均平均精度(MAP)和可可召回指标会带来一系列独特的挑战。这些挑战包括需要保持动态大小的状态以计算平均平均精度,对全局数据集级别统计数据计算指标的依赖,以及管理批次中图像之间的边界框不同的数量。结果,研究人员和从业人员将可可指标评估为培训后评估步骤是普遍的实践。使用图形友好的算法来计算可可平均的平均精度和回忆,可以在训练时间评估这些指标,从而提高通过训练曲线图的指标演变的可见性,并在原型进行新模型版本时降低迭代时间。我们的贡献包括平均平均精度的准确近似算法,可可平均平均精度和可可召回的开源实现,广泛的数值基准测试以验证我们实施的准确性以及包括火车时间评估的开源培训循环平均平均精度和回忆。
translated by 谷歌翻译
Single-frame InfraRed Small Target (SIRST) detection has been a challenging task due to a lack of inherent characteristics, imprecise bounding box regression, a scarcity of real-world datasets, and sensitive localization evaluation. In this paper, we propose a comprehensive solution to these challenges. First, we find that the existing anchor-free label assignment method is prone to mislabeling small targets as background, leading to their omission by detectors. To overcome this issue, we propose an all-scale pseudo-box-based label assignment scheme that relaxes the constraints on scale and decouples the spatial assignment from the size of the ground-truth target. Second, motivated by the structured prior of feature pyramids, we introduce the one-stage cascade refinement network (OSCAR), which uses the high-level head as soft proposals for the low-level refinement head. This allows OSCAR to process the same target in a cascade coarse-to-fine manner. Finally, we present a new research benchmark for infrared small target detection, consisting of the SIRST-V2 dataset of real-world, high-resolution single-frame targets, the normalized contrast evaluation metric, and the DeepInfrared toolkit for detection. We conduct extensive ablation studies to evaluate the components of OSCAR and compare its performance to state-of-the-art model-driven and data-driven methods on the SIRST-V2 benchmark. Our results demonstrate that a top-down cascade refinement framework can improve the accuracy of infrared small target detection without sacrificing efficiency. The DeepInfrared toolkit, dataset, and trained models are available at https://github.com/YimianDai/open-deepinfrared to advance further research in this field.
translated by 谷歌翻译
Figure 1: Results obtained from our single image, monocular 3D object detection network MonoDIS on a KITTI3D test image with corresponding birds-eye view, showing its ability to estimate size and orientation of objects at different scales.
translated by 谷歌翻译