在本文中,我们通过将无线电信息结合到最先进的检测方法中提出了一种无线电辅助人类检测框架,包括基于锚的oneStage检测器和两级检测器。我们从无线电信号中提取无线电定位和标识符信息以帮助人类检测,由于哪种错误阳性和假否定的问题可能会大大缓解。对于两个探测器,我们使用基于无线电定位的置信度评分修订来提高检测性能。对于两级检测方法,我们建议利用无线电定位产生的区域提案,而不是依赖于区域提案网络(RPN)。此外,利用无线电标识符信息,还提出了具有无线电定位约束的非最大抑制方法,以进一步抑制假检测并减少错过的检测。模拟Microsoft Coco DataSet和CALTECH步行数据集的实验表明,借助无线电信息可以改善平均平均精度(地图)和最先进的检测方法的错过率。最后,我们在现实世界的情况下进行实验,以展示我们在实践中的提出方法的可行性。
translated by 谷歌翻译
物体检测通常需要在现代深度学习方法中基于传统或锚盒的滑动窗口分类器。但是,这些方法中的任何一个都需要框中的繁琐配置。在本文中,我们提供了一种新的透视图,其中检测对象被激励为高电平语义特征检测任务。与边缘,角落,斑点和其他特征探测器一样,所提出的探测器扫描到全部图像的特征点,卷积自然适合该特征点。但是,与这些传统的低级功能不同,所提出的探测器用于更高级别的抽象,即我们正在寻找有物体的中心点,而现代深层模型已经能够具有如此高级别的语义抽象。除了Blob检测之外,我们还预测了中心点的尺度,这也是直接的卷积。因此,在本文中,通过卷积简化了行人和面部检测作为直接的中心和规模预测任务。这样,所提出的方法享有一个无盒设置。虽然结构简单,但它对几个具有挑战性的基准呈现竞争准确性,包括行人检测和面部检测。此外,执行交叉数据集评估,证明所提出的方法的卓越泛化能力。可以访问代码和模型(https://github.com/liuwei16/csp和https://github.com/hasanirtiza/pedestron)。
translated by 谷歌翻译
在对象检测中,当检测器未能检测到目标对象时,会出现假阴性。为了了解为什么对象检测产生假阴性,我们确定了五个“假负机制”,其中每个机制都描述了检测器体系结构内部的特定组件如何失败。着眼于两阶段和一阶段锚点对象检测器体系结构,我们引入了一个框架,用于量化这些虚假的负面机制。使用此框架,我们调查了为什么更快的R-CNN和视网膜无法检测基准视觉数据集和机器人数据集中的对象。我们表明,检测器的假负机制在计算机视觉基准数据集和机器人部署方案之间存在显着差异。这对为机器人应用程序开发的对象检测器的翻译具有影响。
translated by 谷歌翻译
Single-frame InfraRed Small Target (SIRST) detection has been a challenging task due to a lack of inherent characteristics, imprecise bounding box regression, a scarcity of real-world datasets, and sensitive localization evaluation. In this paper, we propose a comprehensive solution to these challenges. First, we find that the existing anchor-free label assignment method is prone to mislabeling small targets as background, leading to their omission by detectors. To overcome this issue, we propose an all-scale pseudo-box-based label assignment scheme that relaxes the constraints on scale and decouples the spatial assignment from the size of the ground-truth target. Second, motivated by the structured prior of feature pyramids, we introduce the one-stage cascade refinement network (OSCAR), which uses the high-level head as soft proposals for the low-level refinement head. This allows OSCAR to process the same target in a cascade coarse-to-fine manner. Finally, we present a new research benchmark for infrared small target detection, consisting of the SIRST-V2 dataset of real-world, high-resolution single-frame targets, the normalized contrast evaluation metric, and the DeepInfrared toolkit for detection. We conduct extensive ablation studies to evaluate the components of OSCAR and compare its performance to state-of-the-art model-driven and data-driven methods on the SIRST-V2 benchmark. Our results demonstrate that a top-down cascade refinement framework can improve the accuracy of infrared small target detection without sacrificing efficiency. The DeepInfrared toolkit, dataset, and trained models are available at https://github.com/YimianDai/open-deepinfrared to advance further research in this field.
translated by 谷歌翻译
在诸如人类姿态估计的关键点估计任务中,尽管具有显着缺点,但基于热线的回归是主要的方法:Heatmaps本质上遭受量化误差,并且需要过多的计算来产生和后处理。有动力寻找更有效的解决方案,我们提出了一种新的热映射无关声点估计方法,其中各个关键点和空间相关的关键点(即,姿势)被建模为基于密集的单级锚的检测框架内的对象。因此,我们将我们的方法Kapao(发音为“KA-Pow!”)对于关键点并作为对象构成。我们通过同时检测人姿势对象和关键点对象并融合检测来利用两个对象表示的强度来将Kapao应用于单阶段多人人类姿势估算问题。在实验中,我们观察到Kapao明显比以前的方法更快,更准确,这极大地来自热爱处理后处理。此外,在不使用测试时间增强时,精度速度折衷特别有利。我们的大型型号Kapao-L在Microsoft Coco Keypoints验证集上实现了70.6的AP,而无需测试时增强,其比下一个最佳单级模型更准确,4.0 AP更准确。此外,Kapao在重闭塞的存在下擅长。在繁荣试验套上,Kapao-L为一个单级方法实现新的最先进的准确性,AP为68.9。
translated by 谷歌翻译
Accurate whole-body multi-person pose estimation and tracking is an important yet challenging topic in computer vision. To capture the subtle actions of humans for complex behavior analysis, whole-body pose estimation including the face, body, hand and foot is essential over conventional body-only pose estimation. In this paper, we present AlphaPose, a system that can perform accurate whole-body pose estimation and tracking jointly while running in realtime. To this end, we propose several new techniques: Symmetric Integral Keypoint Regression (SIKR) for fast and fine localization, Parametric Pose Non-Maximum-Suppression (P-NMS) for eliminating redundant human detections and Pose Aware Identity Embedding for jointly pose estimation and tracking. During training, we resort to Part-Guided Proposal Generator (PGPG) and multi-domain knowledge distillation to further improve the accuracy. Our method is able to localize whole-body keypoints accurately and tracks humans simultaneously given inaccurate bounding boxes and redundant detections. We show a significant improvement over current state-of-the-art methods in both speed and accuracy on COCO-wholebody, COCO, PoseTrack, and our proposed Halpe-FullBody pose estimation dataset. Our model, source codes and dataset are made publicly available at https://github.com/MVIG-SJTU/AlphaPose.
translated by 谷歌翻译
两阶段探测器在物体检测和行人检测中是最新的。但是,当前的两个阶段探测器效率低下,因为它们在多个步骤中进行边界回归,即在区域提案网络和边界框头中进行回归。此外,基于锚的区域提案网络在计算上的训练价格很高。我们提出了F2DNET,这是一种新型的两阶段检测体系结构,通过使用我们的焦点检测网络和边界框以我们的快速抑制头替换区域建议网络,从而消除了当前两阶段检测器的冗余。我们在顶级行人检测数据集上进行基准F2DNET,将其与现有的最新检测器进行彻底比较,并进行交叉数据集评估,以测试我们模型对未见数据的普遍性。我们的F2DNET在城市人员,加州理工学院行人和欧元城市人数据集中分别获得8.7 \%,2.2 \%和6.1 \%MR-2,分别在单个数据集上进行培训并达到20.4 \%\%\%和26.2 \%MR-2。使用渐进式微调时,加州理工学院行人和城市人员数据集的重型闭塞设置。此外,与当前的最新时间相比,F2DNET的推理时间明显较小。代码和训练有素的模型将在https://github.com/abdulhannankhan/f2dnet上找到。
translated by 谷歌翻译
Non-maximum suppression is an integral part of the object detection pipeline. First, it sorts all detection boxes on the basis of their scores. The detection box M with the maximum score is selected and all other detection boxes with a significant overlap (using a pre-defined threshold) with M are suppressed. This process is recursively applied on the remaining boxes. As per the design of the algorithm, if an object lies within the predefined overlap threshold, it leads to a miss. To this end, we propose Soft-NMS, an algorithm which decays the detection scores of all other objects as a continuous function of their overlap with M. Hence, no object is eliminated in this process. Soft-NMS obtains consistent improvements for the coco-style mAP metric on standard datasets like PASCAL VOC 2007 (1.7% for both R-FCN and Faster-RCNN) and MS-COCO (1.3% for R-FCN and 1.1% for Faster-RCNN) by just changing the NMS algorithm without any additional hyper-parameters. UsingDeformable-RFCN, Soft-NMS improves state-of-the-art in object detection from 39.8% to 40.9% with a single model. Further, the computational complexity of Soft-NMS is the same as traditional NMS and hence it can be efficiently implemented. Since Soft-NMS does not require any extra training and is simple to implement, it can be easily integrated into any object detection pipeline. Code for Soft-NMS is publicly available on GitHub http://bit.ly/ 2nJLNMu.
translated by 谷歌翻译
3D object detection from LiDAR point cloud is a challenging problem in 3D scene understanding and has many practical applications. In this paper, we extend our preliminary work PointRCNN to a novel and strong point-cloud-based 3D object detection framework, the part-aware and aggregation neural network (Part-A 2 net). The whole framework consists of the part-aware stage and the part-aggregation stage. Firstly, the part-aware stage for the first time fully utilizes free-of-charge part supervisions derived from 3D ground-truth boxes to simultaneously predict high quality 3D proposals and accurate intra-object part locations. The predicted intra-object part locations within the same proposal are grouped by our new-designed RoI-aware point cloud pooling module, which results in an effective representation to encode the geometry-specific features of each 3D proposal. Then the part-aggregation stage learns to re-score the box and refine the box location by exploring the spatial relationship of the pooled intra-object part locations. Extensive experiments are conducted to demonstrate the performance improvements from each component of our proposed framework. Our Part-A 2 net outperforms all existing 3D detection methods and achieves new state-of-the-art on KITTI 3D object detection dataset by utilizing only the LiDAR point cloud data. Code is available at https://github.com/sshaoshuai/PointCloudDet3D.
translated by 谷歌翻译
大多数最先进的实例级人类解析模型都采用了两阶段的基于锚的探测器,因此无法避免启发式锚盒设计和像素级别缺乏分析。为了解决这两个问题,我们设计了一个实例级人类解析网络,该网络在像素级别上无锚固且可解决。它由两个简单的子网络组成:一个用于边界框预测的无锚检测头和一个用于人体分割的边缘引导解析头。无锚探测器的头继承了像素样的优点,并有效地避免了对象检测应用中证明的超参数的敏感性。通过引入部分感知的边界线索,边缘引导的解析头能够将相邻的人类部分与彼此区分开,最多可在一个人类实例中,甚至重叠的实例。同时,利用了精炼的头部整合盒子级别的分数和部分分析质量,以提高解析结果的质量。在两个多个人类解析数据集(即CIHP和LV-MHP-V2.0)和一个视频实例级人类解析数据集(即VIP)上进行实验,表明我们的方法实现了超过全球级别和实例级别的性能最新的一阶段自上而下的替代方案。
translated by 谷歌翻译
室内视频中的头部检测是许多真实应用的重要组成部分。虽然深层模型在一般物体检测中取得了显着进展,但它们在复杂的室内场景中不足以满足。室内监控视频通常包括杂乱的背景对象,其中头部有小尺度和不同的姿势。在本文中,我们提出了运动感知伪暹罗网络(MPSN),一种端到端的方法,利用头部运动信息来引导深层模型来提取室内场景中的有效头特征。通过将相邻帧的像素明显差异作为辅助输入,MPSN有效地增强了人头运动信息并消除了背景中的无关物体。与现有方法相比,它在两个室内视频数据集中实现了卓越的性能。我们的实验表明,MPSN成功地抑制了静态背景对象,并突出了移动实例,尤其是室内视频中的人类头部。我们还比较不同的方法来捕获头部运动,这表明MPSN的简单性和灵活性。最后,为了验证MPSN的稳健性,我们对鲁棒模型选择的小扰动的数学解决方案进行对抗性实验。代码可在https://github.com/pl-share/mpsn获得。
translated by 谷歌翻译
Object detection has been dominated by anchor-based detectors for several years. Recently, anchor-free detectors have become popular due to the proposal of FPN and Focal Loss. In this paper, we first point out that the essential difference between anchor-based and anchor-free detection is actually how to define positive and negative training samples, which leads to the performance gap between them. If they adopt the same definition of positive and negative samples during training, there is no obvious difference in the final performance, no matter regressing from a box or a point. This shows that how to select positive and negative training samples is important for current object detectors. Then, we propose an Adaptive Training Sample Selection (ATSS) to automatically select positive and negative samples according to statistical characteristics of object. It significantly improves the performance of anchor-based and anchor-free detectors and bridges the gap between them. Finally, we discuss the necessity of tiling multiple anchors per location on the image to detect objects. Extensive experiments conducted on MS COCO support our aforementioned analysis and conclusions. With the newly introduced ATSS, we improve stateof-the-art detectors by a large margin to 50.7% AP without introducing any overhead. The code is available at https://github.com/sfzhang15/ATSS.
translated by 谷歌翻译
The 1$^{\text{st}}$ Workshop on Maritime Computer Vision (MaCVi) 2023 focused on maritime computer vision for Unmanned Aerial Vehicles (UAV) and Unmanned Surface Vehicle (USV), and organized several subchallenges in this domain: (i) UAV-based Maritime Object Detection, (ii) UAV-based Maritime Object Tracking, (iii) USV-based Maritime Obstacle Segmentation and (iv) USV-based Maritime Obstacle Detection. The subchallenges were based on the SeaDronesSee and MODS benchmarks. This report summarizes the main findings of the individual subchallenges and introduces a new benchmark, called SeaDronesSee Object Detection v2, which extends the previous benchmark by including more classes and footage. We provide statistical and qualitative analyses, and assess trends in the best-performing methodologies of over 130 submissions. The methods are summarized in the appendix. The datasets, evaluation code and the leaderboard are publicly available at https://seadronessee.cs.uni-tuebingen.de/macvi.
translated by 谷歌翻译
The detection of human body and its related parts (e.g., face, head or hands) have been intensively studied and greatly improved since the breakthrough of deep CNNs. However, most of these detectors are trained independently, making it a challenging task to associate detected body parts with people. This paper focuses on the problem of joint detection of human body and its corresponding parts. Specifically, we propose a novel extended object representation that integrates the center location offsets of body or its parts, and construct a dense single-stage anchor-based Body-Part Joint Detector (BPJDet). Body-part associations in BPJDet are embedded into the unified representation which contains both the semantic and geometric information. Therefore, BPJDet does not suffer from error-prone association post-matching, and has a better accuracy-speed trade-off. Furthermore, BPJDet can be seamlessly generalized to jointly detect any body part. To verify the effectiveness and superiority of our method, we conduct extensive experiments on the CityPersons, CrowdHuman and BodyHands datasets. The proposed BPJDet detector achieves state-of-the-art association performance on these three benchmarks while maintains high accuracy of detection. Code will be released to facilitate further studies.
translated by 谷歌翻译
Due to object detection's close relationship with video analysis and image understanding, it has attracted much research attention in recent years. Traditional object detection methods are built on handcrafted features and shallow trainable architectures. Their performance easily stagnates by constructing complex ensembles which combine multiple low-level image features with high-level context from object detectors and scene classifiers. With the rapid development in deep learning, more powerful tools, which are able to learn semantic, high-level, deeper features, are introduced to address the problems existing in traditional architectures. These models behave differently in network architecture, training strategy and optimization function, etc. In this paper, we provide a review on deep learning based object detection frameworks. Our review begins with a brief introduction on the history of deep learning and its representative tool, namely Convolutional Neural Network (CNN). Then we focus on typical generic object detection architectures along with some modifications and useful tricks to improve detection performance further. As distinct specific detection tasks exhibit different characteristics, we also briefly survey several specific tasks, including salient object detection, face detection and pedestrian detection. Experimental analyses are also provided to compare various methods and draw some meaningful conclusions. Finally, several promising directions and tasks are provided to serve as guidelines for future work in both object detection and relevant neural network based learning systems.
translated by 谷歌翻译
Confluence是对对象检测的边界框后处理中的非墨西哥抑制(NMS)替代的新型非交流(IOU)替代方案。它克服了基于IOU的NMS变体的固有局限性,以通过使用归一化的曼哈顿距离启发的接近度度量来表示边界框聚类的更稳定,一致的预测指标来表示边界框群集。与贪婪和柔软的NMS不同,它不仅依赖分类置信度得分来选择最佳边界框,而是选择与给定群集中最接近其他盒子的框并删除高度汇合的相邻框。在MS Coco和CrowdHuman基准测试中,汇合的平均精度最高2.3-3.8%,而平均召回率则与DEACTO标准和ART NMS NMS变体相比,平均召回率最高为5.3-7.2%。广泛的定性分析和阈值灵敏度分析实验支持了定量结果,这支持了结论,即汇合比NMS变体更健壮。 Confluence代表边界框处理中的范式变化,有可能在边界框回归过程中替换IOU。
translated by 谷歌翻译
标签分配在现代对象检测模型中起着重要作用。检测模型可能会通过不同的标签分配策略产生完全不同的性能。对于基于锚的检测模型,锚点及其相应的地面真实边界框之间的IO(与联合的交点)是关键要素,因为正面样品和负样品除以IOU阈值。早期对象探测器仅利用所有训练样本的固定阈值,而最近的检测算法则基于基于IOUS到地面真相框的分布而着重于自适应阈值。在本文中,我们介绍了一种简单的同时有效的方法,可以根据预测的培训状态动态执行标签分配。通过在标签分配中引入预测,选择了更高的地面真相对象的高质量样本作为正样本,这可以减少分类得分和IOU分数之间的差异,并生成更高质量的边界框。我们的方法显示了使用自适应标签分配算法和这些正面样本的下限框损失的检测模型的性能的改进,这表明将更多具有较高质量预测盒的样品选择为阳性。
translated by 谷歌翻译
我们提出对象盒,这是一种新颖的单阶段锚定且高度可推广的对象检测方法。与现有的基于锚固的探测器和无锚的探测器相反,它们更偏向于其标签分配中的特定对象量表,我们仅将对象中心位置用作正样本,并在不同的特征级别中平均处理所有对象,而不论对象'尺寸或形状。具体而言,我们的标签分配策略将对象中心位置视为形状和尺寸不足的锚定,并以无锚固的方式锚定,并允许学习每个对象的所有尺度。为了支持这一点,我们将新的回归目标定义为从中心单元位置的两个角到边界框的四个侧面的距离。此外,为了处理比例变化的对象,我们提出了一个量身定制的损失来处理不同尺寸的盒子。结果,我们提出的对象检测器不需要在数据集中调整任何依赖数据集的超参数。我们在MS-Coco 2017和Pascal VOC 2012数据集上评估了我们的方法,并将我们的结果与最先进的方法进行比较。我们观察到,与先前的作品相比,对象盒的性能优惠。此外,我们执行严格的消融实验来评估我们方法的不同组成部分。我们的代码可在以下网址提供:https://github.com/mohsenzand/objectbox。
translated by 谷歌翻译
In this work, we study 3D object detection from RGB-D data in both indoor and outdoor scenes. While previous methods focus on images or 3D voxels, often obscuring natural 3D patterns and invariances of 3D data, we directly operate on raw point clouds by popping up RGB-D scans. However, a key challenge of this approach is how to efficiently localize objects in point clouds of large-scale scenes (region proposal). Instead of solely relying on 3D proposals, our method leverages both mature 2D object detectors and advanced 3D deep learning for object localization, achieving efficiency as well as high recall for even small objects. Benefited from learning directly in raw point clouds, our method is also able to precisely estimate 3D bounding boxes even under strong occlusion or with very sparse points. Evaluated on KITTI and SUN RGB-D 3D detection benchmarks, our method outperforms the state of the art by remarkable margins while having real-time capability. * Majority of the work done as an intern at Nuro, Inc. depth to point cloud 2D region (from CNN) to 3D frustum 3D box (from PointNet)
translated by 谷歌翻译
Among current anchor-based detectors, a positive anchor box will be intuitively assigned to the object that overlaps it the most. The assigned label to each anchor will directly determine the optimization direction of the corresponding prediction box, including the direction of box regression and category prediction. In our practice of crowded object detection, however, the results show that a positive anchor does not always regress toward the object that overlaps it the most when multiple objects overlap. We name it anchor drift. The anchor drift reflects that the anchor-object matching relation, which is determined by the degree of overlap between anchors and objects, is not always optimal. Conflicts between the fixed matching relation and learned experience in the past training process may cause ambiguous predictions and thus raise the false-positive rate. In this paper, a simple but efficient adaptive two-stage anchor assignment (TSAA) method is proposed. It utilizes the final prediction boxes rather than the fixed anchors to calculate the overlap degree with objects to determine which object to regress for each anchor. The participation of the prediction box makes the anchor-object assignment mechanism adaptive. Extensive experiments are conducted on three classic detectors RetinaNet, Faster-RCNN and YOLOv3 on CrowdHuman and COCO to evaluate the effectiveness of TSAA. The results show that TSAA can significantly improve the detectors' performance without additional computational costs or network structure changes.
translated by 谷歌翻译