对于涉及连续的,半监督的学习以进行长期监测的应用程序,高维计算(HDC)作为机器学习范式非常有趣。但是,其准确性尚未与其他机器学习(ML)方法相提并论。允许快速设计空间探索以找到实用算法的框架对于使高清计算与其他ML技术竞争是必要的。为此,我们介绍了HDTORCH,这是一个开源的,基于Pytorch的HDC库,其中包含用于HyperVector操作的CUDA扩展名。我们通过使用经典和在线HD培训方法来分析四个HDC基准数据集,从而证明了HDTORCH的实用程序。我们为经典/在线HD的平均(训练)/推理速度分别为(111x/68x)/87x。此外,我们分析了不同的超参数对运行时和准确性的影响。最后,我们演示了HDTORCH如何实现对大型现实世界数据集应用的HDC策略的探索。我们对CHB-MIT EEG癫痫数据库进行了首个高清训练和推理分析。结果表明,在一部分数据子集上训练的典型方法不一定会推广到整个数据集,这是开发医疗可穿戴设备的未来HD模型时的重要因素。
translated by 谷歌翻译
癫痫患者的长期监测来自实时检测和可穿戴设备设计的工程角度呈现出具有挑战性的问题。它需要新的解决方案,允许连续无阻碍的监控和可靠的癫痫发作检测和预测。在癫痫发作期间的人,脑状态和时间实例中存在脑电图(EEG)模式的高可变性,而且在非扣押期间。这使得癫痫癫痫发作检测非常具有挑战性,特别是如果数据仅在癫痫发作和非癫痫标签下分组。超方(HD)计算,一种新型机器学习方法,作为一个有前途的工具。但是,当数据显示高级别的可变性时,它具有一定的限制。因此,在这项工作中,我们提出了一种基于多心高清计算的新型半监督学习方法。多质心方法允许有几个代表癫痫发作和非癫痫发作状态的原型向量,这导致与简单的2级HD模型相比显着提高了性能。此外,现实生活数据不平衡造成了额外的挑战,并且在数据的平衡子集上报告的性能可能被高估。因此,我们测试我们的多质心方法,具有三个不同的数据集平衡方案,显示较少平衡数据集的性能提升更高。更具体地,在不平衡的测试集上实现了高达14%的改进,而不是比癫痫发作数据更加不癫痫发布的10倍。与此同时,与平衡数据集相比,子类的总数不会显着增加。因此,所提出的多质心方法可以是实现具有现实数据余额或在线学习期间实现高性能的重要因素,癫痫发作不常见。
translated by 谷歌翻译
健康监测应用程序越来越依赖机器学习技术来学习日常环境中的最终用户生理和行为模式。考虑到可穿戴设备在监视人体参数中的重要作用,可以利用在设备学习中为行为和生理模式构建个性化模型,并同时为用户提供数据隐私。但是,大多数这些可穿戴设备的资源限制都阻止了对它们进行在线学习的能力。为了解决这个问题,需要从算法的角度重新考虑机器学习模型,以适合在可穿戴设备上运行。高维计算(HDC)为资源受限设备提供了非常适合的设备学习解决方案,并为隐私保护个性化提供了支持。我们的基于HDC的方法具有灵活性,高效率,弹性和性能,同时可以实现设备个性化和隐私保护。我们使用三个案例研究评估方法的功效,并表明我们的系统将培训的能源效率提高了高达$ 45.8 \ times $,与最先进的深神经网络(DNN)算法相比准确性。
translated by 谷歌翻译
基于惯性数据的人类活动识别(HAR)是从智能手机到超低功率传感器的嵌入式设备上越来越扩散的任务。由于深度学习模型的计算复杂性很高,因此大多数嵌入式HAR系统基于简单且不那么精确的经典机器学习算法。这项工作弥合了在设备上的HAR和深度学习之间的差距,提出了一组有效的一维卷积神经网络(CNN),可在通用微控制器(MCUS)上部署。我们的CNN获得了将超参数优化与子字节和混合精确量化的结合,以在分类结果和记忆职业之间找到良好的权衡。此外,我们还利用自适应推断作为正交优化,以根据处理后的输入来调整运行时的推理复杂性,从而产生更灵活的HAR系统。通过在四个数据集上进行实验,并针对超低功率RISC-V MCU,我们表明(i)我们能够为HAR获得一组丰富的帕累托(Pareto)最佳CNN,以范围超过1个数量级记忆,潜伏期和能耗; (ii)由于自适应推断,我们可以从单个CNN开始得出> 20个运行时操作模式,分类分数的不同程度高达10%,并且推理复杂性超过3倍,并且内存开销有限; (iii)在四个基准中的三个基准中,我们的表现都超过了所有以前的深度学习方法,将记忆占用率降低了100倍以上。获得更好性能(浅层和深度)的少数方法与MCU部署不兼容。 (iv)我们所有的CNN都与推理延迟<16ms的实时式evice Har兼容。他们的记忆职业在0.05-23.17 kb中有所不同,其能源消耗为0.005和61.59 UJ,可在较小的电池供应中进行多年的连续操作。
translated by 谷歌翻译
我们提出了TOD,这是一个在分布式多GPU机器上进行有效且可扩展的离群检测(OD)的系统。 TOD背后的一个关键思想是将OD应用程序分解为基本张量代数操作。这种分解使TOD能够通过利用硬件和软件中深度学习基础架构的最新进展来加速OD计算。此外,要在有限内存的现代GPU上部署昂贵的OD算法,我们引入了两种关键技术。首先,可证明的量化可以加快OD计算的速度,并通过以较低的精度执行特定的浮点操作来减少其内存足迹,同时证明没有准确的损失。其次,为了利用多个GPU的汇总计算资源和内存能力,我们引入了自动批处理,该批次将OD计算分解为小批次,以便在多个GPU上并行执行。 TOD支持一套全面且多样化的OD算法,例如LOF,PCA和HBOS以及实用程序功能。对真实和合成OD数据集的广泛评估表明,TOD平均比领先的基于CPU的OD系统PYOD快11.6倍(最大加速度为38.9倍),并且比各种GPU底线要处理的数据集更大。值得注意的是,TOD可以直接整合其他OD算法,并提供了将经典OD算法与深度学习方法相结合的统一框架。这些组合产生了无限数量的OD方法,其中许多方法是新颖的,可以很容易地在TOD中进行原型。
translated by 谷歌翻译
深度神经网络(DNNS)的边缘训练是持续学习的理想目标。但是,这受到训练所需的巨大计算能力的阻碍。硬件近似乘数表明,它们在获得DNN推理加速器中获得资源效率的有效性;但是,使用近似乘数的培训在很大程度上尚未开发。为了通过支持DNN培训的近似乘数来构建有效的资源加速器,需要对不同DNN体系结构和不同近似乘数进行彻底评估。本文介绍了近似值,这是一个开源框架,允许使用模拟近似乘数快速评估DNN训练和推理。近似值与TensorFlow(TF)一样用户友好,仅需要对DNN体系结构的高级描述以及近似乘数的C/C ++功能模型。我们通过使用GPU(AMSIM)上的基于基于LUT的近似浮点(FP)乘数模拟器来提高乘数在乘数级别的模拟速度。近似值利用CUDA并有效地将AMSIM集成到张量库中,以克服商业GPU中的本机硬件近似乘数的缺乏。我们使用近似值来评估使用LENET和RESNETS体系结构的小型和大型数据集(包括Imagenet)的近似乘数的DNN训练的收敛性和准确性。与FP32和BFLOAT16乘数相比,评估表明测试准确性相似的收敛行为和可忽略不计的变化。与训练和推理中基于CPU的近似乘数模拟相比,GPU加速近似值快2500倍以上。基于具有本地硬件乘数的高度优化的闭合源Cudnn/Cublas库,原始张量量仅比近似值快8倍。
translated by 谷歌翻译
在过去的二十年中,癫痫发作检测和预测算法迅速发展。然而,尽管性能得到了重大改进,但它们使用常规技术(例如互补的金属氧化物 - 轴导剂(CMO))进行的硬件实施,在权力和面积受限的设置中仍然是一项艰巨的任务;特别是当使用许多录音频道时。在本文中,我们提出了一种新型的低延迟平行卷积神经网络(CNN)体系结构,与SOTA CNN体系结构相比,网络参数少2-2,800倍,并且达到5倍的交叉验证精度为99.84%,用于癫痫发作检测,检测到99.84%。癫痫发作预测的99.01%和97.54%分别使用波恩大学脑电图(EEG),CHB-MIT和SWEC-ETHZ癫痫发作数据集进行评估。随后,我们将网络实施到包含电阻随机存储器(RRAM)设备的模拟横梁阵列上,并通过模拟,布置和确定系统中CNN组件的硬件要求来提供全面的基准。据我们所知,我们是第一个平行于在单独的模拟横杆上执行卷积层内核的人,与SOTA混合Memristive-CMOS DL加速器相比,潜伏期降低了2个数量级。此外,我们研究了非理想性对系统的影响,并研究了量化意识培训(QAT),以减轻由于ADC/DAC分辨率较低而导致的性能降解。最后,我们提出了一种卡住的重量抵消方法,以减轻因卡住的Ron/Roff Memristor重量而导致的性能降解,而无需再进行重新培训而恢复了高达32%的精度。我们平台的CNN组件估计在22nm FDSOI CMOS流程中占据31.255mm $^2 $的面积约为2.791W。
translated by 谷歌翻译
超比计算(HDC)是由大脑启发的新出现的计算框架,其在数千个尺寸上运行以模拟认知的载体。与运行数量的传统计算框架不同,HDC,如大脑,使用高维随机向量并能够一次学习。 HDC基于明确定义的算术运算集,并且是高度误差的。 HDC的核心运营操纵高清vectors以散装比特方式,提供许多机会利用并行性。遗憾的是,在传统的von-neuman架构上,处理器中的高清矢量的连续运动可以使认知任务过度缓慢和能量密集。硬件加速器只会略微改进相关的指标。相反,只有使用新兴铭文设备内存的HDC框架的部分实施,已报告了相当大的性能/能源收益。本文介绍了一种基于赛道内存(RTM)的架构,以便在内存中进行和加速整个HDC框架。所提出的解决方案需要最小的附加CMOS电路,并在称为横向读取(TR)的RTM中跨多个域的读取操作,以实现排他性或(XOR)和添加操作。为了最小化CMOS电路的开销,我们提出了一种基于RTM纳米线的计数机制,其利用TR操作和标准RTM操作。使用语言识别作为用例,分别与FPGA设计相比,整体运行时和能耗降低了7.8倍和5.3倍。与最先进的内存实现相比,所提出的HDC系统将能耗降低8.6倍。
translated by 谷歌翻译
机器学习的进步为低端互联网节点(例如微控制器)带来了新的机会,将情报带入了情报。传统的机器学习部署具有较高的记忆力,并计算足迹阻碍了其在超资源约束的微控制器上的直接部署。本文强调了为MicroController类设备启用机载机器学习的独特要求。研究人员为资源有限的应用程序使用专门的模型开发工作流程,以确保计算和延迟预算在设备限制之内,同时仍保持所需的性能。我们表征了微控制器类设备的机器学习模型开发的广泛适用的闭环工作流程,并表明几类应用程序采用了它的特定实例。我们通过展示多种用例,将定性和数值见解介绍到模型开发的不同阶段。最后,我们确定了开放的研究挑战和未解决的问题,要求仔细考虑前进。
translated by 谷歌翻译
高维计算(HDC)是用于数据表示和学习的范式,起源于计算神经科学。HDC将数据表示为高维,低精度向量,可用于学习或召回等各种信息处理任务。高维空间的映射是HDC中的一个基本问题,现有方法在输入数据本身是高维时会遇到可伸缩性问题。在这项工作中,我们探索了一个基于哈希的流媒体编码技术。我们正式表明,这些方法在学习应用程序的性能方面具有可比的保证,同时比现有替代方案更有效。我们在一个流行的高维分类问题上对这些结果进行了实验验证,并表明我们的方法很容易扩展到非常大的数据集。
translated by 谷歌翻译
With the rise of AI in recent years and the increase in complexity of the models, the growing demand in computational resources is starting to pose a significant challenge. The need for higher compute power is being met with increasingly more potent accelerators and the use of large compute clusters. However, the gain in prediction accuracy from large models trained on distributed and accelerated systems comes at the price of a substantial increase in energy demand, and researchers have started questioning the environmental friendliness of such AI methods at scale. Consequently, energy efficiency plays an important role for AI model developers and infrastructure operators alike. The energy consumption of AI workloads depends on the model implementation and the utilized hardware. Therefore, accurate measurements of the power draw of AI workflows on different types of compute nodes is key to algorithmic improvements and the design of future compute clusters and hardware. To this end, we present measurements of the energy consumption of two typical applications of deep learning models on different types of compute nodes. Our results indicate that 1. deriving energy consumption directly from runtime is not accurate, but the consumption of the compute node needs to be considered regarding its composition; 2. neglecting accelerator hardware on mixed nodes results in overproportional inefficiency regarding energy consumption; 3. energy consumption of model training and inference should be considered separately - while training on GPUs outperforms all other node types regarding both runtime and energy consumption, inference on CPU nodes can be comparably efficient. One advantage of our approach is that the information on energy consumption is available to all users of the supercomputer, enabling an easy transfer to other workloads alongside a raise in user-awareness of energy consumption.
translated by 谷歌翻译
深度学习领域目睹了对极端计算和内存密集型神经网络的显着转变。这些较新的较大模型使研究人员能够推进各种领域的最先进的工具。这种现象刺激了在更多的硬件加速器上产生了针对神经网络的分布式训练的算法。在本文中,我们讨论并比较了当前的最先进的框架,以实现大规模的分布式深度学习。首先,我们调查分布式学习中的当前实践,并确定所使用的不同类型的并行性。然后,我们提出了对大型图像和语言培训任务的性能进行了经验结果。此外,我们解决了他们的统计效率和内存消耗行为。根据我们的结果,我们讨论了阻碍性能的每个框架的算法和实现部分。
translated by 谷歌翻译
比较不同的汽车框架是具有挑战性的,并且经常做错了。我们引入了一个开放且可扩展的基准测试,该基准遵循最佳实践,并在比较自动框架时避免常见错误。我们对71个分类和33项回归任务进行了9个著名的自动框架进行了详尽的比较。通过多面分析,评估模型的准确性,与推理时间的权衡以及框架失败,探索了自动框架之间的差异。我们还使用Bradley-terry树来发现相对自动框架排名不同的任务子集。基准配备了一个开源工具,该工具与许多自动框架集成并自动化经验评估过程端到端:从框架安装和资源分配到深入评估。基准测试使用公共数据集,可以轻松地使用其他Automl框架和任务扩展,并且具有最新结果的网站。
translated by 谷歌翻译
Deep neural networks (DNNs) are currently widely used for many artificial intelligence (AI) applications including computer vision, speech recognition, and robotics. While DNNs deliver state-of-the-art accuracy on many AI tasks, it comes at the cost of high computational complexity. Accordingly, techniques that enable efficient processing of DNNs to improve energy efficiency and throughput without sacrificing application accuracy or increasing hardware cost are critical to the wide deployment of DNNs in AI systems.This article aims to provide a comprehensive tutorial and survey about the recent advances towards the goal of enabling efficient processing of DNNs. Specifically, it will provide an overview of DNNs, discuss various hardware platforms and architectures that support DNNs, and highlight key trends in reducing the computation cost of DNNs either solely via hardware design changes or via joint hardware design and DNN algorithm changes. It will also summarize various development resources that enable researchers and practitioners to quickly get started in this field, and highlight important benchmarking metrics and design considerations that should be used for evaluating the rapidly growing number of DNN hardware designs, optionally including algorithmic co-designs, being proposed in academia and industry.The reader will take away the following concepts from this article: understand the key design considerations for DNNs; be able to evaluate different DNN hardware implementations with benchmarks and comparison metrics; understand the trade-offs between various hardware architectures and platforms; be able to evaluate the utility of various DNN design techniques for efficient processing; and understand recent implementation trends and opportunities.
translated by 谷歌翻译
随着现代世界中对高度安全和可靠的轻质系统的需求增加,物理上无统治的功能(PUF)继续承诺可轻巧的高成本加密技术和安全钥匙存储。虽然PUF承诺的安全功能对安全系统设计师具有很高的吸引力,但已证明它们容易受到各种复杂攻击的攻击 - 最著名的是基于机器的建模攻击(ML -MA),这些攻击(ML -MA)试图以数字方式克隆PUF行为因此破坏了他们的安全。最新的ML-MA甚至还利用了PUF误差校正所需的公开辅助数据,以预测PUF响应而无需了解响应数据。为此,与传统的PUF储存技术和比较的PUF技术相反,研究开始研究PUF设备的身份验证,并进行了著名的挑战 - 响应对(CRP)的比较。在本文中,我们基于新颖的“ PUF - 表型”概念提出了一个使用ML的分类系统,以准确识别起点并确定得出的噪声记忆(DRAM)PUF响应的有效性作为助手数据依赖数据的Denoisis技术的替代方法。据我们所知,我们是第一个每个模型对多个设备进行分类的人,以实现基于组的PUF身份验证方案。我们使用修改后的深卷积神经网络(CNN)最多达到98 \%的分类精度,并与几个完善的分类器结合使用特征提取。我们还在实验中验证了在Raspberry Pi设备上模型的性能,以确定在资源约束环境中部署我们所提出的模型的适用性。
translated by 谷歌翻译
Artificial Intelligence (AI) is having a tremendous impact across most areas of science. Applications of AI in healthcare have the potential to improve our ability to detect, diagnose, prognose, and intervene on human disease. For AI models to be used clinically, they need to be made safe, reproducible and robust, and the underlying software framework must be aware of the particularities (e.g. geometry, physiology, physics) of medical data being processed. This work introduces MONAI, a freely available, community-supported, and consortium-led PyTorch-based framework for deep learning in healthcare. MONAI extends PyTorch to support medical data, with a particular focus on imaging, and provide purpose-specific AI model architectures, transformations and utilities that streamline the development and deployment of medical AI models. MONAI follows best practices for software-development, providing an easy-to-use, robust, well-documented, and well-tested software framework. MONAI preserves the simple, additive, and compositional approach of its underlying PyTorch libraries. MONAI is being used by and receiving contributions from research, clinical and industrial teams from around the world, who are pursuing applications spanning nearly every aspect of healthcare.
translated by 谷歌翻译
本文以生物学启发的神经形态硬件进行了最新创新,本文介绍了一种新颖的无监督机器学习算法,名为Hyperseed,该算法借鉴了矢量符号体系结构(VSA)的原理,用于快速学习保存未标记数据的拓扑图。它依靠VSA的两个主要操作,具有约束力和捆绑。 Hyperseed的算法部分在傅立叶全息降低表示模型中表达,该模型特别适合于尖峰神经形态硬件实现。 Hyperseed算法的两个主要贡献是很少的学习和基于单个向量操作的学习规则。这些属性在合成数据集以及说明性基准用例,IRIS分类以及使用N-Gram统计信息的语言标识任务上进行了经验评估。这些实验的结果证实了Hyperseed及其在神经形态硬件中的应用。
translated by 谷歌翻译
采用基于AI的安全/关键任务应用程序的伟大寻求促使人们对评估应用W.R.T.鲁棒性的方法的兴趣。不仅其训练/调整,而且还由于故障,尤其是软错误而导致的错误,从而影响了基础硬件。存在两种策略:体系结构级故障注入和应用级功能误差模拟。我们提出了一个通过错误模拟引擎对卷积神经网络(CNN)的可靠性分析的框架,该引擎利用了从详细的故障注入活动中提取的一组验证的错误模型。这些错误模型是根据由故障引起的CNN操作员输出的损坏模式定义的,并弥合了故障注入和误差模拟之间的差距,从而利用了两种方法的优势。我们将我们的方法与SASSIFI进行了比较,以进行功能误差模拟W.R.T.的准确性。故障注射,并针对tensorfi进行误差模拟策略的速度。实验结果表明,我们的方法可达到断层效应的99 \%精度W.R.T. SASSIFI,速度从44倍到63x W.R.T. Tensorfi,仅实现有限的误差模型。
translated by 谷歌翻译
负责将数据从存储转移到GPU的同时,在培训机器学习模型的同时,数据加载器可能会大大提高培训工作的绩效。最近的进步不仅通过大大减少训练时间,而且还提供了新功能,例如从远程存储(如S3)加载数据,这表明了希望。在本文中,我们是第一个将数据加载器区分为深度学习(DL)工作流程中的单独组件并概述其结构和功能的组件。最后,我们提供了可用的不同数据库,其功能,可用性和性能方面的权衡以及从中获得的见解的全面比较。
translated by 谷歌翻译
目前,数据赢得了用户生成的数据和数据处理系统之间的大鼠竞赛。机器学习的使用增加导致处理需求的进一步增加,而数据量不断增长。为了赢得比赛,需要将机器学习应用于通过网络的数据。数据的网络分类可以减少服务器上的负载,减少响应时间并提高可伸缩性。在本文中,我们使用现成的网络设备以混合方式介绍了IISY,以混合方式实施机器学习分类模型。 IISY针对网络内分类的三个主要挑战:(i)将分类模型映射到网络设备(ii)提取所需功能以及(iii)解决资源和功能约束。 IISY支持一系列传统和集合机器学习模型,独立于开关管道中的阶段数量扩展。此外,我们证明了IISY用于混合分类的使用,其中在一个开关上实现了一个小模型,在后端的大型模型上实现了一个小模型,从而实现了接近最佳的分类结果,同时大大降低了服务器上的延迟和负载。
translated by 谷歌翻译