健康监测应用程序越来越依赖机器学习技术来学习日常环境中的最终用户生理和行为模式。考虑到可穿戴设备在监视人体参数中的重要作用,可以利用在设备学习中为行为和生理模式构建个性化模型,并同时为用户提供数据隐私。但是,大多数这些可穿戴设备的资源限制都阻止了对它们进行在线学习的能力。为了解决这个问题,需要从算法的角度重新考虑机器学习模型,以适合在可穿戴设备上运行。高维计算(HDC)为资源受限设备提供了非常适合的设备学习解决方案,并为隐私保护个性化提供了支持。我们的基于HDC的方法具有灵活性,高效率,弹性和性能,同时可以实现设备个性化和隐私保护。我们使用三个案例研究评估方法的功效,并表明我们的系统将培训的能源效率提高了高达$ 45.8 \ times $,与最先进的深神经网络(DNN)算法相比准确性。
translated by 谷歌翻译
智能EHealth应用程序通过遥感,连续监控和数据分析为客户提供个性化和预防性的数字医疗服务。智能EHealth应用程序从多种模态感知输入数据,将数据传输到边缘和/或云节点,并使用计算密集型机器学习(ML)算法处理数据。连续的嘈杂输入数据,不可靠的网络连接,ML算法的计算要求以及传感器 - 边缘云层之间的计算放置选择会影响ML驱动的EHEADH应用程序的效率。在本章中,我们介绍了以优化的计算放置,准确性绩效权衡的探索以及用于ML驱动的EHEADH应用程序的跨层次感觉的合作式化的技术。我们通过传感器 - 边缘云框架进行客观疼痛评估案例研究,证明了在日常设置中智能eHealth应用程序的实际用例。
translated by 谷歌翻译
对于涉及连续的,半监督的学习以进行长期监测的应用程序,高维计算(HDC)作为机器学习范式非常有趣。但是,其准确性尚未与其他机器学习(ML)方法相提并论。允许快速设计空间探索以找到实用算法的框架对于使高清计算与其他ML技术竞争是必要的。为此,我们介绍了HDTORCH,这是一个开源的,基于Pytorch的HDC库,其中包含用于HyperVector操作的CUDA扩展名。我们通过使用经典和在线HD培训方法来分析四个HDC基准数据集,从而证明了HDTORCH的实用程序。我们为经典/在线HD的平均(训练)/推理速度分别为(111x/68x)/87x。此外,我们分析了不同的超参数对运行时和准确性的影响。最后,我们演示了HDTORCH如何实现对大型现实世界数据集应用的HDC策略的探索。我们对CHB-MIT EEG癫痫数据库进行了首个高清训练和推理分析。结果表明,在一部分数据子集上训练的典型方法不一定会推广到整个数据集,这是开发医疗可穿戴设备的未来HD模型时的重要因素。
translated by 谷歌翻译
癫痫患者的长期监测来自实时检测和可穿戴设备设计的工程角度呈现出具有挑战性的问题。它需要新的解决方案,允许连续无阻碍的监控和可靠的癫痫发作检测和预测。在癫痫发作期间的人,脑状态和时间实例中存在脑电图(EEG)模式的高可变性,而且在非扣押期间。这使得癫痫癫痫发作检测非常具有挑战性,特别是如果数据仅在癫痫发作和非癫痫标签下分组。超方(HD)计算,一种新型机器学习方法,作为一个有前途的工具。但是,当数据显示高级别的可变性时,它具有一定的限制。因此,在这项工作中,我们提出了一种基于多心高清计算的新型半监督学习方法。多质心方法允许有几个代表癫痫发作和非癫痫发作状态的原型向量,这导致与简单的2级HD模型相比显着提高了性能。此外,现实生活数据不平衡造成了额外的挑战,并且在数据的平衡子集上报告的性能可能被高估。因此,我们测试我们的多质心方法,具有三个不同的数据集平衡方案,显示较少平衡数据集的性能提升更高。更具体地,在不平衡的测试集上实现了高达14%的改进,而不是比癫痫发作数据更加不癫痫发布的10倍。与此同时,与平衡数据集相比,子类的总数不会显着增加。因此,所提出的多质心方法可以是实现具有现实数据余额或在线学习期间实现高性能的重要因素,癫痫发作不常见。
translated by 谷歌翻译
由于照顾不断增长的老年人口的医疗和财务需求,对跌倒的及时可靠发现是一个大型且快速增长的研究领域。在过去的20年中,高质量硬件(高质量传感器和AI微芯片)和软件(机器学习算法)技术的可用性通过为开发人员提供开发此类系统的功能,从而成为这项研究的催化剂。这项研究开发了多个应用组件,以研究秋季检测系统的发展挑战和选择,并为未来的研究提供材料。使用此方法开发的智能应用程序通过秋季检测模型实验和模型移动部署的结果验证。总体上表现最好的模型是标准化的RESNET152,并带有2S窗口尺寸的调整数据集,可实现92.8%的AUC,7.28%的灵敏度和98.33%的特异性。鉴于这些结果很明显,加速度计和心电图传感器对秋季检测有益,并允许跌倒和其他活动之间的歧视。由于所得数据集中确定的弱点,这项研究为改进的空间留下了很大的改进空间。这些改进包括在跌落的临界阶段使用标签协议,增加数据集样品的数量,改善测试主题表示形式,并通过频域预处理进行实验。
translated by 谷歌翻译
本文以生物学启发的神经形态硬件进行了最新创新,本文介绍了一种新颖的无监督机器学习算法,名为Hyperseed,该算法借鉴了矢量符号体系结构(VSA)的原理,用于快速学习保存未标记数据的拓扑图。它依靠VSA的两个主要操作,具有约束力和捆绑。 Hyperseed的算法部分在傅立叶全息降低表示模型中表达,该模型特别适合于尖峰神经形态硬件实现。 Hyperseed算法的两个主要贡献是很少的学习和基于单个向量操作的学习规则。这些属性在合成数据集以及说明性基准用例,IRIS分类以及使用N-Gram统计信息的语言标识任务上进行了经验评估。这些实验的结果证实了Hyperseed及其在神经形态硬件中的应用。
translated by 谷歌翻译
Explainable Artificial Intelligence (XAI) is transforming the field of Artificial Intelligence (AI) by enhancing the trust of end-users in machines. As the number of connected devices keeps on growing, the Internet of Things (IoT) market needs to be trustworthy for the end-users. However, existing literature still lacks a systematic and comprehensive survey work on the use of XAI for IoT. To bridge this lacking, in this paper, we address the XAI frameworks with a focus on their characteristics and support for IoT. We illustrate the widely-used XAI services for IoT applications, such as security enhancement, Internet of Medical Things (IoMT), Industrial IoT (IIoT), and Internet of City Things (IoCT). We also suggest the implementation choice of XAI models over IoT systems in these applications with appropriate examples and summarize the key inferences for future works. Moreover, we present the cutting-edge development in edge XAI structures and the support of sixth-generation (6G) communication services for IoT applications, along with key inferences. In a nutshell, this paper constitutes the first holistic compilation on the development of XAI-based frameworks tailored for the demands of future IoT use cases.
translated by 谷歌翻译
近年来,随着传感器和智能设备的广泛传播,物联网(IoT)系统的数据生成速度已大大增加。在物联网系统中,必须经常处理,转换和分析大量数据,以实现各种物联网服务和功能。机器学习(ML)方法已显示出其物联网数据分析的能力。但是,将ML模型应用于物联网数据分析任务仍然面临许多困难和挑战,特别是有效的模型选择,设计/调整和更新,这给经验丰富的数据科学家带来了巨大的需求。此外,物联网数据的动态性质可能引入概念漂移问题,从而导致模型性能降解。为了减少人类的努力,自动化机器学习(AUTOML)已成为一个流行的领域,旨在自动选择,构建,调整和更新机器学习模型,以在指定任务上实现最佳性能。在本文中,我们对Automl区域中模型选择,调整和更新过程中的现有方法进行了审查,以识别和总结将ML算法应用于IoT数据分析的每个步骤的最佳解决方案。为了证明我们的发现并帮助工业用户和研究人员更好地实施汽车方法,在这项工作中提出了将汽车应用于IoT异常检测问题的案例研究。最后,我们讨论并分类了该领域的挑战和研究方向。
translated by 谷歌翻译
超越地球轨道的人类空间勘探将涉及大量距离和持续时间的任务。为了有效减轻无数空间健康危害,数据和空间健康系统的范式转移是实现地球独立性的,而不是Earth-Reliance所必需的。有希望在生物学和健康的人工智能和机器学习领域的发展可以解决这些需求。我们提出了一个适当的自主和智能精密空间健康系统,可以监控,汇总和评估生物医学状态;分析和预测个性化不良健康结果;适应并响应新累积的数据;并提供对其船员医务人员的个人深度空间机组人员和迭代决策支持的预防性,可操作和及时的见解。在这里,我们介绍了美国国家航空航天局组织的研讨会的建议摘要,以便在太空生物学和健康中未来的人工智能应用。在未来十年,生物监测技术,生物标志科学,航天器硬件,智能软件和简化的数据管理必须成熟,并编织成精确的空间健康系统,以使人类在深空中茁壮成长。
translated by 谷歌翻译
医学事物互联网(IOMT)允许使用传感器收集生理数据,然后将其传输到远程服务器,这使医生和卫生专业人员可以连续,永久地分析这些数据,并在早期阶段检测疾病。但是,使用无线通信传输数据将其暴露于网络攻击中,并且该数据的敏感和私人性质可能代表了攻击者的主要兴趣。在存储和计算能力有限的设备上使用传统的安全方法无效。另一方面,使用机器学习进行入侵检测可以对IOMT系统的要求提供适应性的安全响应。在这种情况下,对基于机器学习(ML)的入侵检测系统如何解决IOMT系统中的安全性和隐私问题的全面调查。为此,提供了IOMT的通用三层体系结构以及IOMT系统的安全要求。然后,出现了可能影响IOMT安全性的各种威胁,并确定基于ML的每个解决方案中使用的优势,缺点,方法和数据集。最后,讨论了在IOMT的每一层中应用ML的一些挑战和局限性,这些挑战和局限性可以用作未来的研究方向。
translated by 谷歌翻译
可穿戴设备和医疗器互联网(IOMT)的最新发展允许实时监控和记录心电图(ECG)信号。然而,由于能量和内存约束,对ECG信号的连续监测在低功耗可穿戴设备中具有挑战性。因此,在本文中,我们提出了一种新颖和节能的方法,用于连续监测低功耗可穿戴设备的心脏。所提出的方法由三个不同的层组成:1)噪声/伪像检测层,以级别ECG信号的质量; 2)正常/异常拍摄分类层以检测心电图信号中的异常,3)异常搏动分类层以检测来自ECG信号的疾病。此外,分布式多输出卷积神经网络(CNN)架构用于降低边缘/云之间的能量消耗和等待时间。我们的方法论在众所周知的MIT-BIH心律失常数据集上达到了99.2%的准确性。 Real硬件的评估表明,我们的方法是适用于具有32KB最小RAM的设备。此外,与最先进的工作相比,所提出的方法可以获得7美元的能效。
translated by 谷歌翻译
数字化和自动化方面的快速进步导致医疗保健的加速增长,从而产生了新型模型,这些模型正在创造新的渠道,以降低成本。 Metaverse是一项在数字空间中的新兴技术,在医疗保健方面具有巨大的潜力,为患者和医生带来了现实的经验。荟萃分析是多种促成技术的汇合,例如人工智能,虚拟现实,增强现实,医疗设备,机器人技术,量子计算等。通过哪些方向可以探索提供优质医疗保健治疗和服务的新方向。这些技术的合并确保了身临其境,亲密和个性化的患者护理。它还提供自适应智能解决方案,以消除医疗保健提供者和接收器之间的障碍。本文对医疗保健的荟萃分析提供了全面的综述,强调了最新技术的状态,即采用医疗保健元元的能力技术,潜在的应用程序和相关项目。还确定了用于医疗保健应用的元元改编的问题,并强调了合理的解决方案作为未来研究方向的一部分。
translated by 谷歌翻译
我们提出了一个新颖的框架,用于设计无乘数内核机器,该机器可以在智能边缘设备等资源约束平台上使用。该框架使用基于边缘传播(MP)技术的分段线性(PWL)近似值,仅使用加法/减法,移位,比较和寄存器底流/溢出操作。我们建议使用针对现场可编程门阵列(FPGA)平台进行优化的基于硬件的MP推理和在线培训算法。我们的FPGA实施消除了对DSP单元的需求,并减少了LUT的数量。通过重复使用相同的硬件进行推理和培训,我们表明该平台可以克服由MP近似产生的分类错误和本地最小值。该提议的无乘数MP-Kernel机器在FPGA上的实施导致估计的能源消耗为13.4 PJ,功率消耗为107 MW,每台均具有〜9K LUTS和FFS,每张均具有256 x 32个大小的核与其他可比实现相比,区域和区域。
translated by 谷歌翻译
深度学习在使用心电图(ECG)数据分类不同的心律失常方面发挥着重要作用。然而,培训深入学习模型通常需要大量数据,它可能导致隐私问题。不幸的是,无法从单个筒仓中容易地收集大量的医疗保健数据。此外,深度学习模型就像黑盒子,没有解释的预测结果,通常在临床医疗保健中需要。这限制了深度学习在现实世界卫生系统中的应用。在本文中,我们设计了一种基于ECG的医疗保健应用的联邦设置的新的可解释的人工智能(XAI)的深度学习框架。联合设置用于解决数据可用性和隐私问题等问题。此外,所提出的框架设置有效地根据卷积神经网络(CNN)使用AutoEncoder和分类器来分类心律失常。此外,我们提出了一个基于XAI的模块,在拟议的分类器的顶部上解释了分类结果,帮助临床从业者做出快速可靠的决策。拟议的框架是使用MIT-BIH心律失常数据库进行培训和测试。分类器可分别使用噪声和清洁数据进行高达94%和98%的精度,使用嘈杂和清洁数据,具有五倍的交叉验证。
translated by 谷歌翻译
心血管疾病(CVD)是全球死亡的第一大原因。尽管有越来越多的证据表明心房颤动(AF)与各种CVD有着密切的关联,但这种心律不齐通常是使用心电图(ECG)诊断的,这是一种无风险,无侵入性和具有成本效益的工具。在任何威胁生命的疾病/疾病发展之前,不断和远程监视受试者的心电图信息迅速诊断和及时对AF进行预处理的潜力。最终,可以降低CVD相关的死亡率。在此手稿中,展示了体现可穿戴心电图设备,移动应用程序和后端服务器的个性化医疗系统的设计和实施。该系统不断监视用户的心电图信息,以提供个性化的健康警告/反馈。用户能够通过该系统与他们的配对健康顾问进行远程诊断,干预措施等。已经评估了实施的可穿戴ECG设备,并显示出极好的一致性(CVRMS = 5.5%),可接受的一致性(CVRMS = CVRMS = CVRMS = 12.1%),可忽略不计的RR间隙错误(<1.4%)。为了提高可穿戴设备的电池寿命,提出了使用ECG信号的准周期特征来实现压缩的有损压缩模式。与公认的架构相比,它在压缩效率和失真方面优于其他模式,并在MIT-BIH数据库中以ECG信号的某个PRD或RMSE达到了至少2倍的Cr。为了在拟议系统中实现自动化AF诊断/筛查,开发了基于重新系统的AF检测器。对于2017年Physionet CINC挑战的ECG记录,该AF探测器获得了平均测试F1 = 85.10%和最佳测试F1 = 87.31%,表现优于最先进。
translated by 谷歌翻译
超比计算(HDC)是由大脑启发的新出现的计算框架,其在数千个尺寸上运行以模拟认知的载体。与运行数量的传统计算框架不同,HDC,如大脑,使用高维随机向量并能够一次学习。 HDC基于明确定义的算术运算集,并且是高度误差的。 HDC的核心运营操纵高清vectors以散装比特方式,提供许多机会利用并行性。遗憾的是,在传统的von-neuman架构上,处理器中的高清矢量的连续运动可以使认知任务过度缓慢和能量密集。硬件加速器只会略微改进相关的指标。相反,只有使用新兴铭文设备内存的HDC框架的部分实施,已报告了相当大的性能/能源收益。本文介绍了一种基于赛道内存(RTM)的架构,以便在内存中进行和加速整个HDC框架。所提出的解决方案需要最小的附加CMOS电路,并在称为横向读取(TR)的RTM中跨多个域的读取操作,以实现排他性或(XOR)和添加操作。为了最小化CMOS电路的开销,我们提出了一种基于RTM纳米线的计数机制,其利用TR操作和标准RTM操作。使用语言识别作为用例,分别与FPGA设计相比,整体运行时和能耗降低了7.8倍和5.3倍。与最先进的内存实现相比,所提出的HDC系统将能耗降低8.6倍。
translated by 谷歌翻译
信号处理是几乎任何传感器系统的基本组件,具有不同科学学科的广泛应用。时间序列数据,图像和视频序列包括可以增强和分析信息提取和量化的代表性形式的信号。人工智能和机器学习的最近进步正在转向智能,数据驱动,信号处理的研究。该路线图呈现了最先进的方法和应用程序的关键概述,旨在突出未来的挑战和对下一代测量系统的研究机会。它涵盖了广泛的主题,从基础到工业研究,以简明的主题部分组织,反映了每个研究领域的当前和未来发展的趋势和影响。此外,它为研究人员和资助机构提供了识别新前景的指导。
translated by 谷歌翻译
如今,人工智能(AI)已成为临床和远程医疗保健应用程序的基本组成部分,但是最佳性能的AI系统通常太复杂了,无法自我解释。可解释的AI(XAI)技术被定义为揭示系统的预测和决策背后的推理,并且在处理敏感和个人健康数据时,它们变得更加至关重要。值得注意的是,XAI并未在不同的研究领域和数据类型中引起相同的关注,尤其是在医疗保健领域。特别是,许多临床和远程健康应用程序分别基于表格和时间序列数据,而XAI并未在这些数据类型上进行分析,而计算机视觉和自然语言处理(NLP)是参考应用程序。为了提供最适合医疗领域表格和时间序列数据的XAI方法的概述,本文提供了过去5年中文献的审查,说明了生成的解释的类型以及为评估其相关性所提供的努力和质量。具体而言,我们确定临床验证,一致性评估,客观和标准化质量评估以及以人为本的质量评估作为确保最终用户有效解释的关键特征。最后,我们强调了该领域的主要研究挑战以及现有XAI方法的局限性。
translated by 谷歌翻译
关键字斑点(kWs)是一个重要的功能,使我们的周围环境中许多无处不在的智能设备进行交互,可以通过唤醒词或直接作为人机界面激活它们。对于许多应用程序,KWS是我们与设备交互的进入点,因此,始终是ON工作负载。许多智能设备都是移动的,并且它们的电池寿命受到持续运行的服务受到严重影响。因此,KWS和类似的始终如一的服务是在优化整体功耗时重点。这项工作解决了低成本微控制器单元(MCU)的KWS节能。我们将模拟二元特征提取与二元神经网络相结合。通过用拟议的模拟前端取代数字预处理,我们表明数据采集和预处理所需的能量可以减少29倍,将其份额从主导的85%的份额削减到仅为我们的整体能源消耗的16%参考KWS应用程序。语音命令数据集的实验评估显示,所提出的系统分别优于最先进的准确性和能效,在10级数据集中分别在10级数据集上达到1%和4.3倍,同时提供令人信服的精度 - 能源折衷包括71倍能量减少2%的精度下降。
translated by 谷歌翻译
高维计算(HDC)是用于数据表示和学习的范式,起源于计算神经科学。HDC将数据表示为高维,低精度向量,可用于学习或召回等各种信息处理任务。高维空间的映射是HDC中的一个基本问题,现有方法在输入数据本身是高维时会遇到可伸缩性问题。在这项工作中,我们探索了一个基于哈希的流媒体编码技术。我们正式表明,这些方法在学习应用程序的性能方面具有可比的保证,同时比现有替代方案更有效。我们在一个流行的高维分类问题上对这些结果进行了实验验证,并表明我们的方法很容易扩展到非常大的数据集。
translated by 谷歌翻译