我们通过使用KRAUS操作员学习过程表示,对离散和连续变量量子系统执行量子过程断层扫描(QPT)。克劳斯形式确保重建过程是完全积极的。为了使过程保持痕量保护,我们在优化期间在所谓的stiefel歧管上使用约束的梯度散发(GD)方法,以获得Kraus oberators。我们的Ansatz使用一些KRAUS操作员来避免直接估计大型过程矩阵,例如Choi矩阵,用于低级别量子过程。 GD-QPT匹配压缩 - 感应(CS)和投影最小二乘(PLS)QPT的基准测试中的性能,并具有两Q量的随机过程,但是通过结合这两种方法的最佳功能来发光。与CS相似(但与PLS不同),GD-QPT可以从少量随机测量中重建一个过程,并且类似于PLS(但与CS不同),它也适用于更大的系统尺寸,最多可达至少五个Qubits。我们设想,GD-QPT的数据驱动方法可以成为一种实用工具,可大大降低中等规模量子系统中QPT的成本和计算工作。
translated by 谷歌翻译
FIG. 1. Schematic diagram of a Variational Quantum Algorithm (VQA). The inputs to a VQA are: a cost function C(θ), with θ a set of parameters that encodes the solution to the problem, an ansatz whose parameters are trained to minimize the cost, and (possibly) a set of training data {ρ k } used during the optimization. Here, the cost can often be expressed in the form in Eq. ( 3), for some set of functions {f k }. Also, the ansatz is shown as a parameterized quantum circuit (on the left), which is analogous to a neural network (also shown schematically on the right). At each iteration of the loop one uses a quantum computer to efficiently estimate the cost (or its gradients). This information is fed into a classical computer that leverages the power of optimizers to navigate the cost landscape C(θ) and solve the optimization problem in Eq. ( 1). Once a termination condition is met, the VQA outputs an estimate of the solution to the problem. The form of the output depends on the precise task at hand. The red box indicates some of the most common types of outputs.
translated by 谷歌翻译
Quantum state tomography aims to estimate the state of a quantum mechanical system which is described by a trace one, Hermitian positive semidefinite complex matrix, given a set of measurements of the state. Existing works focus on estimating the density matrix that represents the state, using a compressive sensing approach, with only fewer measurements than that required for a tomographically complete set, with the assumption that the true state has a low rank. One very popular method to estimate the state is the use of the Singular Value Thresholding (SVT) algorithm. In this work, we present a machine learning approach to estimate the quantum state of n-qubit systems by unrolling the iterations of SVT which we call Learned Quantum State Tomography (LQST). As merely unrolling SVT may not ensure that the output of the network meets the constraints required for a quantum state, we design and train a custom neural network whose architecture is inspired from the iterations of SVT with additional layers to meet the required constraints. We show that our proposed LQST with very few layers reconstructs the density matrix with much better fidelity than the SVT algorithm which takes many hundreds of iterations to converge. We also demonstrate the reconstruction of the quantum Bell state from an informationally incomplete set of noisy measurements.
translated by 谷歌翻译
在当前的嘈杂中间尺度量子(NISQ)时代,量子机学习正在成为基于程序门的量子计算机的主要范式。在量子机学习中,对量子电路的门进行了参数化,并且参数是根据数据和电路输出的测量来通过经典优化来调整的。参数化的量子电路(PQC)可以有效地解决组合优化问题,实施概率生成模型并进行推理(分类和回归)。该专着为具有概率和线性代数背景的工程师的观众提供了量子机学习的独立介绍。它首先描述了描述量子操作和测量所必需的必要背景,概念和工具。然后,它涵盖了参数化的量子电路,变异量子本质层以及无监督和监督的量子机学习公式。
translated by 谷歌翻译
量子计算有可能彻底改变和改变我们的生活和理解世界的方式。该审查旨在提供对量子计算的可访问介绍,重点是统计和数据分析中的应用。我们从介绍了了解量子计算所需的基本概念以及量子和经典计算之间的差异。我们描述了用作量子算法的构建块的核心量子子程序。然后,我们审查了一系列预期的量子算法,以便在统计和机器学习中提供计算优势。我们突出了将量子计算应用于统计问题的挑战和机遇,并讨论潜在的未来研究方向。
translated by 谷歌翻译
找到给定目标状态的最近可分离状态是一个臭名昭着的困难任务,比决定状态是否缠绕或可分离更困难。为了解决这项任务,我们使用神经网络参加可分离状态,并训练它相对于微量距离,例如迹线距离或希尔伯特施密特距离最小化到给定目标状态的距离。通过检查算法的输出,我们可以推断目标状态是否缠绕在外,并构建其最近可分离状态的近似。我们在各种着名的两性阶段的方法上基准测试,找到了很好的协议,甚至可以达到$ d = 10 $的局部维度。此外,考虑到不同的可分离概念,我们展示了我们在多分钟案件中有效的方法。检查三个和四方GHz和W状态,我们恢复了已知的范围,并获得了新颖的边界,例如进行三维可解性。最后,我们展示了如何使用神经网络的结果来获得分析洞察力。
translated by 谷歌翻译
旨在在低维潜在空间中压缩量子信息的量子自动编码器位于量子信息领域的自动数据压缩的核心。在本文中,我们为给定的量子自动编码器建立了压缩率的上限,并提出了一种学习控制方法,用于训练自动编码器以达到最大压缩率。理论上使用特征分解和基质分化来证明压缩率的上限,这取决于输入状态的密度矩阵表示的特征值。提出了2 Q量和3 Q量系统的数值结果,以演示如何训练量子自动编码器以实现理论上最大的压缩,并比较使用不同的机器学习算法的训练性能。说明了使用量子光学系统的量子自动编码器的实验结果,以将两个2 Q Q Q Q Qubit的状态压缩为两个1 Quit状态。
translated by 谷歌翻译
Quantum-enhanced data science, also known as quantum machine learning (QML), is of growing interest as an application of near-term quantum computers. Variational QML algorithms have the potential to solve practical problems on real hardware, particularly when involving quantum data. However, training these algorithms can be challenging and calls for tailored optimization procedures. Specifically, QML applications can require a large shot-count overhead due to the large datasets involved. In this work, we advocate for simultaneous random sampling over both the dataset as well as the measurement operators that define the loss function. We consider a highly general loss function that encompasses many QML applications, and we show how to construct an unbiased estimator of its gradient. This allows us to propose a shot-frugal gradient descent optimizer called Refoqus (REsource Frugal Optimizer for QUantum Stochastic gradient descent). Our numerics indicate that Refoqus can save several orders of magnitude in shot cost, even relative to optimizers that sample over measurement operators alone.
translated by 谷歌翻译
量子技术有可能彻底改变我们如何获取和处理实验数据以了解物理世界。一种实验设置,将来自物理系统的数据转换为稳定的量子存储器,以及使用量子计算机的数据的处理可以具有显着的优点,这些实验可以具有测量物理系统的传统实验,并且使用经典计算机处理结果。我们证明,在各种任务中,量子机器可以从指数较少的实验中学习而不是传统实验所需的实验。指数优势在预测物理系统的预测属性中,对噪声状态进行量子主成分分析,以及学习物理动态的近似模型。在一些任务中,实现指数优势所需的量子处理可能是适度的;例如,可以通过仅处理系统的两个副本来同时了解许多非信息可观察。我们表明,可以使用当今相对嘈杂的量子处理器实现大量超导QUBITS和1300个量子门的实验。我们的结果突出了量子技术如何能够实现强大的新策略来了解自然。
translated by 谷歌翻译
我们介绍了Netket的版本3,机器学习工具箱适用于许多身体量子物理学。Netket围绕神经网络量子状态构建,并为其评估和优化提供有效的算法。这个新版本是基于JAX的顶部,一个用于Python编程语言的可差分编程和加速的线性代数框架。最重要的新功能是使用机器学习框架的简明符号来定义纯Python代码中的任意神经网络ANS \“凝固的可能性,这允许立即编译以及渐变的隐式生成自动化。Netket 3还带来了GPU和TPU加速器的支持,对离散对称组的高级支持,块以缩放多程度的自由度,Quantum动态应用程序的驱动程序,以及改进的模块化,允许用户仅使用部分工具箱是他们自己代码的基础。
translated by 谷歌翻译
深神经网络是量子状态表征的强大工具。现有网络通常是通过从需要表征的特定量子状态收集的实验数据来训练的。但是,除了用于培训的量子状态以外,是否可以离线训练神经网络并对量子状态进行预测?在这里,我们介绍了一个网络模型,该模型可以接受来自基准状态和测量结果的经典模拟数据训练,然后可以用来表征与基准集中与状态共享结构相似性的量子状态。在很少的量子物理指导下,该网络构建了自己的数据驱动的量子状态表示,然后使用它来预测尚未执行的量子测量结果的结果统计。网络产生的状态表示也可以用于超出预测结果统计数据的任务,包括量子状态的聚类和物质不同阶段的识别。我们的网络模型提供了一种灵活的方法,可以应用于在线学习方案,在该场景中,必须在实验数据可用后立即生成预测,以及学习者只能访问对量子硬件的加密描述的盲目学习场景。
translated by 谷歌翻译
随着量子系统平台的快速进步,噪声量子状态的许多身体量子态重建问题成为一个重要的挑战。最近的作品在重铸量子态重建问题时使用生成神经网络模型来学习量子状态测量向量的概率分布的承诺。在这里,我们提出了“注意力的量子断层扫描”(AQT),使用基于机构的生成网络的量子状态重建,所述生成网络学习嘈杂量子状态的混合状态密度矩阵。 AQT基于Vishwani等人(2017)的“注意是您所需要的所有需要​​”的模型,该模型旨在学习自然语言句子中的远程相关性,从而优于先前的自然语言处理模型。我们不仅展示了AQT的早期基于神经网络的量子状态重建,而且可以准确地重建与IBMQ量子计算机实验地实现的嘈杂量子状态相关的密度矩阵。我们推测了AQT源于其在整个量子系统上模拟量子纠缠的能力的成功,因为自然语言处理的注意模型捕获了句子中的单词之间的相关性。
translated by 谷歌翻译
量子计算为某些问题提供了指数加速的潜力。但是,许多具有可证明加速的现有算法都需要当前不可用的耐故障量子计算机。我们提出了NISQ-TDA,这是第一个完全实现的量子机学习算法,其在任意经典(非手动)数据上具有可证明的指数加速,并且仅需要线性电路深度。我们报告了我们的NISQ-TDA算法的成功执行,该算法应用于在量子计算设备以及嘈杂的量子模拟器上运行的小数据集。我们从经验上证实,该算法对噪声是可靠的,并提供了目标深度和噪声水平,以实现现实世界中问题的近期,无耐受耐受性的量子优势。我们独特的数据加载投影方法是噪声鲁棒性的主要来源,引入了一种新的自我校正数据加载方法。
translated by 谷歌翻译
Hybrid quantum-classical systems make it possible to utilize existing quantum computers to their fullest extent. Within this framework, parameterized quantum circuits can be regarded as machine learning models with remarkable expressive power. This Review presents the components of these models and discusses their application to a variety of data-driven tasks, such as supervised learning and generative modeling. With an increasing number of experimental demonstrations carried out on actual quantum hardware and with software being actively developed, this rapidly growing field is poised to have a broad spectrum of real-world applications.
translated by 谷歌翻译
现代量子机学习(QML)方法涉及在训练数据集上进行各种优化参数化量子电路,并随后对测试数据集(即,泛化)进行预测。在这项工作中,我们在培训数量为N $培训数据点后,我们在QML中对QML的普遍表现进行了全面的研究。我们表明,Quantum机器学习模型的泛化误差与$ T $培训门的尺寸在$ \ sqrt {t / n} $上缩放。当只有$ k \ ll t $ gates在优化过程中经历了大量变化时,我们证明了泛化误差改善了$ \ sqrt {k / n} $。我们的结果意味着将Unitaries编制到通常使用指数训练数据的量子计算行业的多项式栅极数量,这是一项通常使用指数尺寸训练数据的大量应用程序。我们还表明,使用量子卷积神经网络的相位过渡的量子状态的分类只需要一个非常小的训练数据集。其他潜在应用包括学习量子误差校正代码或量子动态模拟。我们的工作将新的希望注入QML领域,因为较少的培训数据保证了良好的概括。
translated by 谷歌翻译
参数化量子电路的优化对于具有变分量子算法(VQAS)的计算任务的应用是必不可少的。然而,VQA的现有优化算法需要过多的量子测量镜头,以估计可观察到的期望值或迭代电路参数的更新,其成本是实际使用的重要障碍。为了解决这个问题,我们开发了一个有效的框架,\ yexit {随机梯度线贝叶斯优化}(SGLBO),用于电路优化,测量镜头较少。通过估计基于随机梯度下降(SGD)更新参数的适当方向,并且进一步利用贝叶斯优化(BO)来估计SGD的每次迭代中的最佳步长,降低测量镜头的成本。我们制定了一个自适应测量射击策略,可在不依赖于精确的期望值估计和许多迭代的情况下可行地实现优化;此外,我们表明,后缀平均技术可以显着降低统计和硬件噪声在VQA的优化中的效果。我们的数值模拟表明,使用这些技术增强的SGLBO可以大大减少所需的测量射击数量,提高优化的准确性,并与VQAS的代表性任务中的其他最先进的优化器相比,增强了噪音的鲁棒性。这些结果建立了一系列量子电路优化器的框架,整合了两种不同的优化方法,SGD和BO,以显着降低测量镜头的成本。
translated by 谷歌翻译
Efficient characterization of highly entangled multi-particle systems is an outstanding challenge in quantum science. Recent developments have shown that a modest number of randomized measurements suffices to learn many properties of a quantum many-body system. However, implementing such measurements requires complete control over individual particles, which is unavailable in many experimental platforms. In this work, we present rigorous and efficient algorithms for learning quantum many-body states in systems with any degree of control over individual particles, including when every particle is subject to the same global field and no additional ancilla particles are available. We numerically demonstrate the effectiveness of our algorithms for estimating energy densities in a U(1) lattice gauge theory and classifying topological order using very limited measurement capabilities.
translated by 谷歌翻译
量化和验证准备量子状态的控制水平是构建量子器件中的中心挑战。量子状态的特点是实验测量,使用称为断层扫描的程序,这需要大量资源。此外,尚未制定与颞下处理的量子装置的断层扫描,其尚未制定与标准断层扫描的逐时处理。我们使用经常性机器学习框架开发了一种实用和近似的断层扫描方法,用于这种有趣情况。该方法基于具有量子态流称为量子储存器的系统之间的重复量子相互作用。来自储存器的测量数据连接到线性读数,以训练施加到输入流的量子通道之间的反复关系。我们展示了Quantum学习任务的算法,然后是Quantum短期内存容量的提议,以评估近术语量子器件的时间处理能力。
translated by 谷歌翻译
由于量子电路上的旋转组件,基于变异电路的某些量子神经网络可以被认为等于经典的傅立叶网络。另外,它们可用于预测连续函数的傅立叶系数。时间序列数据表示时间变量的状态。由于某些时间序列数据也可以视为连续功能,因此我们可以期望量子机学习模型能够在时间序列数据上成功执行许多数据分析任务。因此,重要的是研究用于时间数据处理的新量子逻辑并分析量子计算机上数据的内在关系。在本文中,我们通过使用需要几个量子门的简单量子运算符,浏览经典数据预处理和对Arima模型进行预测的量子类似物。然后,我们讨论未来的方向和一些可用于量子计算机时间数据分析的工具/算法。
translated by 谷歌翻译
近年来,机器学习的巨大进步已经开始对许多科学和技术的许多领域产生重大影响。在本文的文章中,我们探讨了量子技术如何从这项革命中受益。我们在说明性示例中展示了过去几年的科学家如何开始使用机器学习和更广泛的人工智能方法来分析量子测量,估计量子设备的参数,发现新的量子实验设置,协议和反馈策略,以及反馈策略,以及通常改善量子计算,量子通信和量子模拟的各个方面。我们重点介绍了公开挑战和未来的可能性,并在未来十年的一些投机愿景下得出结论。
translated by 谷歌翻译