现代AAA视频游戏具有巨大的游戏水平和地图,越来越难以详尽的测试人员覆盖。结果,游戏经常带着灾难性的虫子发货,例如玩家落在地板上或被卡在墙壁上。我们提出了一种基于功能强大的探索算法,Go-explore的模拟3D环境中针对可及性错误的方法,该方法在地图上保存了独特的检查点,然后确定有希望的探索。我们表明,当Go-explore与从游戏的导航网格中得出的简单启发式方法相结合时,发现了挑战性的错误,并全面探索了复杂的环境,而无需人类的演示或游戏动力学知识。探索大大优于更复杂的基线,包括增强学习,并在涵盖了发现的整个地图上的导航网格和独特位置的数量中都具有内在好奇心。最后,由于我们使用并行代理,我们的算法可以在10小时内在10小时内完全覆盖1.5公里x 1.5公里的游戏世界,这对于连续测试套件非常有希望。
translated by 谷歌翻译
我们在具有挑战性的3D视频游戏中处理规划和导航,其中包含使用特殊操作的代理商的断开区域的地图。在此设置中,经典符号规划者不适用或难以适应。我们介绍了一种混合技术,结合了培训的钢筋学习训练的低级政策和基于图的高级古典规划器。除了提供人类可解释的路径之外,该方法还提高了看不见地图中的端到端方法的泛化性能,在那里它在一点上通过复发端到端剂的成功率达到20%的绝对增加要点导航任务,但看不见的大型码1km x 1km。在深入的实验研究中,我们量化了巨大环境中端到端深度RL方法的局限性,我们还介绍了一个新的基准,即很快被释放的环境,可以生成用于导航任务的复杂程序3D地图。
translated by 谷歌翻译
在本文中,我们介绍了潜在的探索(LGE),这是一种基于探索加固学习(RL)的探索范式的简单而通用的方法。最初引入了Go-explore,并具有强大的域知识约束,以将状态空间划分为单元。但是,在大多数实际情况下,从原始观察中汲取域知识是复杂而乏味的。如果细胞分配不足以提供信息,则可以完全无法探索环境。我们认为,可以通过利用学习的潜在表示,可以将Go-explore方法推广到任何环境,而无需细胞。因此,我们表明LGE可以灵活地与学习潜在表示的任何策略相结合。我们表明,LGE虽然比Go-explore更简单,但在多个硬探索环境上纯粹的探索方面,更强大,并且优于所有最先进的算法。 LGE实现可在https://github.com/qgallouedec/lge上作为开源。
translated by 谷歌翻译
深度强化学习(DRL)在自动游戏测试中引起了很多关注。早期尝试依靠游戏内部信息进行游戏空间探索,因此需要与游戏深入集成,这对于实际应用来说是不便的。在这项工作中,我们建议仅使用屏幕截图/像素作为自动游戏测试的输入,并建立了一般游戏测试代理Inspector,可以轻松地将其应用于不同的游戏,而无需与游戏深入集成。除了覆盖所有游戏测试空间外,我们的代理商还试图采取类似人类的行为与游戏中的关键对象进行交互,因为某些错误通常发生在玩家对象的交互中。检查器基于纯粹的像素输入,包括三个关键模块:游戏空间探索器,关键对象检测器和类似人类的对象研究者。 Game Space Explorer旨在通过使用像素输入的基于好奇心的奖励功能来探索整个游戏空间。关键对象检测器的目的是基于少量标记的屏幕快照在游戏中检测关键对象。类似人类的对象研究者的目标是模仿人类的行为,以通过模仿学习来调查关键对象。我们在两个受欢迎的视频游戏中进行实验:射击游戏和动作RPG游戏。实验结果证明了检查员在探索游戏空间,检测关键对象和调查对象方面的有效性。此外,检查员在这两场比赛中成功发现了两个潜在的错误。检查员的演示视频可从https://github.com/inspector-gametesting/inspector-gametesting获得。
translated by 谷歌翻译
In many real-world scenarios, rewards extrinsic to the agent are extremely sparse, or absent altogether. In such cases, curiosity can serve as an intrinsic reward signal to enable the agent to explore its environment and learn skills that might be useful later in its life. We formulate curiosity as the error in an agent's ability to predict the consequence of its own actions in a visual feature space learned by a self-supervised inverse dynamics model. Our formulation scales to high-dimensional continuous state spaces like images, bypasses the difficulties of directly predicting pixels, and, critically, ignores the aspects of the environment that cannot affect the agent. The proposed approach is evaluated in two environments: VizDoom and Super Mario Bros. Three broad settings are investigated: 1) sparse extrinsic reward, where curiosity allows for far fewer interactions with the environment to reach the goal; 2) exploration with no extrinsic reward, where curiosity pushes the agent to explore more efficiently; and 3) generalization to unseen scenarios (e.g. new levels of the same game) where the knowledge gained from earlier experience helps the agent explore new places much faster than starting from scratch.
translated by 谷歌翻译
Go-Explore achieved breakthrough performance on challenging reinforcement learning (RL) tasks with sparse rewards. The key insight of Go-Explore was that successful exploration requires an agent to first return to an interesting state ('Go'), and only then explore into unknown terrain ('Explore'). We refer to such exploration after a goal is reached as 'post-exploration'. In this paper, we present a clear ablation study of post-exploration in a general intrinsically motivated goal exploration process (IMGEP) framework, that the Go-Explore paper did not show. We study the isolated potential of post-exploration, by turning it on and off within the same algorithm under both tabular and deep RL settings on both discrete navigation and continuous control tasks. Experiments on a range of MiniGrid and Mujoco environments show that post-exploration indeed helps IMGEP agents reach more diverse states and boosts their performance. In short, our work suggests that RL researchers should consider to use post-exploration in IMGEP when possible since it is effective, method-agnostic and easy to implement.
translated by 谷歌翻译
任务 - 无人探索的常见方法学习塔杜拉 - RASA - 代理商假设隔离环境,没有先验的知识或经验。然而,在现实世界中,代理商在许多环境中学习,并且随着他们探索新的环境,始终伴随着事先经验。探索是一场终身的过程。在本文中,我们提出了对任务无关探索的制定和评估的范式变迁。在此设置中,代理首先学会在许多环境中探索,没有任何外在目标的任务不可行的方式。后来,代理商有效地传输了学习探索政策,以便在解决任务时更好地探索新环境。在这方面,我们评估了几种基线勘探战略,并提出了一种简单但有效的学习任务无关探索政策方法。我们的主要思想是,有两种勘探组成部分:(1)基于代理人的信仰,促进探索探索环境的经验主义部分; (2)以环境为中心的组件,鼓励探索固有的有趣物体。我们表明我们的配方是有效的,并提供多种训练测试环境对的最一致的探索。我们还介绍了评估任务无关勘探策略的基准和指标。源代码在https://github.com/sparisi/cbet/处获得。
translated by 谷歌翻译
Deep reinforcement learning is poised to revolutionise the field of AI and represents a step towards building autonomous systems with a higher level understanding of the visual world. Currently, deep learning is enabling reinforcement learning to scale to problems that were previously intractable, such as learning to play video games directly from pixels. Deep reinforcement learning algorithms are also applied to robotics, allowing control policies for robots to be learned directly from camera inputs in the real world. In this survey, we begin with an introduction to the general field of reinforcement learning, then progress to the main streams of value-based and policybased methods. Our survey will cover central algorithms in deep reinforcement learning, including the deep Q-network, trust region policy optimisation, and asynchronous advantage actor-critic. In parallel, we highlight the unique advantages of deep neural networks, focusing on visual understanding via reinforcement learning. To conclude, we describe several current areas of research within the field.
translated by 谷歌翻译
在游戏中,就像在其他许多领域一样,设计验证和测试是一个巨大的挑战,因为系统的大小和手动测试变得不可行。本文提出了一种新方法来自动游戏验证和测试。我们的方法利用了数据驱动的模仿学习技术,这几乎不需要精力和时间,并且对机器学习或编程不了解,设计师可以使用该技术有效地训练游戏测试剂。我们通过与行业专家的用户研究一起研究了方法的有效性。调查结果表明,我们的方法确实是一种有效的游戏验证方法,并且数据驱动的编程将是减少努力和提高现代游戏测试质量的有用帮助。该调查还突出了一些开放挑战。在最新文献的帮助下,我们分析了确定的挑战,并提出了适合支持和最大化我们方法实用性的未来研究方向。
translated by 谷歌翻译
蒙特卡洛树搜索(MCT)是设计游戏机器人或解决顺序决策问题的强大方法。该方法依赖于平衡探索和开发的智能树搜索。MCT以模拟的形式进行随机抽样,并存储动作的统计数据,以在每个随后的迭代中做出更有教育的选择。然而,该方法已成为组合游戏的最新技术,但是,在更复杂的游戏(例如那些具有较高的分支因素或实时系列的游戏)以及各种实用领域(例如,运输,日程安排或安全性)有效的MCT应用程序通常需要其与问题有关的修改或与其他技术集成。这种特定领域的修改和混合方法是本调查的主要重点。最后一项主要的MCT调查已于2012年发布。自发布以来出现的贡献特别感兴趣。
translated by 谷歌翻译
文本冒险游戏由于其组合大的动作空间和稀疏奖励而导致加强学习方法具有独特的挑战。这两个因素的相互作用尤为苛刻,因为大型动作空间需要广泛的探索,而稀疏奖励提供有限的反馈。这项工作提出使用多级方法来解决探索 - 与利用困境,该方法明确地解除了每一集中的这两种策略。我们的算法称为Exploit-Dear-Descore(XTX),使用剥削策略开始每个剧集,该策略是从过去的一组有希望的轨迹开始,然后切换到旨在发现导致未经看不见状态空间的新动作的探索政策。该政策分解允许我们将全球决策结合在该空间中返回基于好奇的本地探索的全球决策,这是由人类可能接近这些游戏的情况。我们的方法在杰里科基准(Hausknecht等人,2020)中,在杰里科基准(Hausknecht等人,2020)中,在确定性和随机设置的比赛中显着优于27%和11%的平均正常化分数。在Zork1的游戏中,特别是,XTX获得103的得分,超过先前方法的2倍改善,并且在游戏中推过已经困扰先前的方法的游戏中的几个已知的瓶颈。
translated by 谷歌翻译
增强学习(RL)研究领域非常活跃,并具有重要的新贡献;特别是考虑到深RL(DRL)的新兴领域。但是,仍然需要解决许多科学和技术挑战,其中我们可以提及抽象行动的能力或在稀疏回报环境中探索环境的难以通过内在动机(IM)来解决的。我们建议通过基于信息理论的新分类法调查这些研究工作:我们在计算上重新审视了惊喜,新颖性和技能学习的概念。这使我们能够确定方法的优势和缺点,并展示当前的研究前景。我们的分析表明,新颖性和惊喜可以帮助建立可转移技能的层次结构,从而进一步抽象环境并使勘探过程更加健壮。
translated by 谷歌翻译
Progress in continual reinforcement learning has been limited due to several barriers to entry: missing code, high compute requirements, and a lack of suitable benchmarks. In this work, we present CORA, a platform for Continual Reinforcement Learning Agents that provides benchmarks, baselines, and metrics in a single code package. The benchmarks we provide are designed to evaluate different aspects of the continual RL challenge, such as catastrophic forgetting, plasticity, ability to generalize, and sample-efficient learning. Three of the benchmarks utilize video game environments (Atari, Procgen, NetHack). The fourth benchmark, CHORES, consists of four different task sequences in a visually realistic home simulator, drawn from a diverse set of task and scene parameters. To compare continual RL methods on these benchmarks, we prepare three metrics in CORA: Continual Evaluation, Isolated Forgetting, and Zero-Shot Forward Transfer. Finally, CORA includes a set of performant, open-source baselines of existing algorithms for researchers to use and expand on. We release CORA and hope that the continual RL community can benefit from our contributions, to accelerate the development of new continual RL algorithms.
translated by 谷歌翻译
建立可以探索开放式环境的自主机器,发现可能的互动,自主构建技能的曲目是人工智能的一般目标。发展方法争辩说,这只能通过可以生成,选择和学习解决自己问题的自主和本质上动机的学习代理人来实现。近年来,我们已经看到了发育方法的融合,特别是发展机器人,具有深度加强学习(RL)方法,形成了发展机器学习的新领域。在这个新域中,我们在这里审查了一组方法,其中深入RL算法训练,以解决自主获取的开放式曲目的发展机器人问题。本质上动机的目标条件RL算法训练代理商学习代表,产生和追求自己的目标。自我生成目标需要学习紧凑的目标编码以及它们的相关目标 - 成就函数,这导致与传统的RL算法相比,这导致了新的挑战,该算法设计用于使用外部奖励信号解决预定义的目标集。本文提出了在深度RL和发育方法的交叉口中进行了这些方法的类型,调查了最近的方法并讨论了未来的途径。
translated by 谷歌翻译
When searching for policies, reward-sparse environments often lack sufficient information about which behaviors to improve upon or avoid. In such environments, the policy search process is bound to blindly search for reward-yielding transitions and no early reward can bias this search in one direction or another. A way to overcome this is to use intrinsic motivation in order to explore new transitions until a reward is found. In this work, we use a recently proposed definition of intrinsic motivation, Curiosity, in an evolutionary policy search method. We propose Curiosity-ES, an evolutionary strategy adapted to use Curiosity as a fitness metric. We compare Curiosity with Novelty, a commonly used diversity metric, and find that Curiosity can generate higher diversity over full episodes without the need for an explicit diversity criterion and lead to multiple policies which find reward.
translated by 谷歌翻译
代理商学习广泛适用和通用策略具有重要意义,可以实现包括图像和文本描述在内的各种目标。考虑到这类感知的目标,深度加强学习研究的前沿是学习一个没有手工制作奖励的目标条件政策。要了解这种政策,最近的作品通常会像奖励到明确的嵌入空间中的给定目标的非参数距离。从不同的观点来看,我们提出了一种新的无监督学习方法,名为目标条件政策,具有内在动机(GPIM),共同学习抽象级别政策和目标条件的政策。摘要级别策略在潜在变量上被调节,以优化鉴别器,并发现进一步的不同状态,进一步呈现为目标条件策略的感知特定目标。学习鉴别者作为目标条件策略的内在奖励功能,以模仿抽象级别政策引起的轨迹。各种机器人任务的实验证明了我们所提出的GPIM方法的有效性和效率,其基本上优于现有技术。
translated by 谷歌翻译
在现实世界中经营通常需要代理商来了解复杂的环境,并应用这种理解以实现一系列目标。这个问题被称为目标有条件的强化学习(GCRL),对长地平线的目标变得特别具有挑战性。目前的方法通过使用基于图形的规划算法增强目标条件的策略来解决这个问题。然而,他们努力缩放到大型高维状态空间,并采用用于有效地收集训练数据的探索机制。在这项工作中,我们介绍了继任者功能标志性(SFL),这是一种探索大型高维环境的框架,以获得熟练的政策熟练的策略。 SFL利用继承特性(SF)来捕获转换动态的能力,通过估计状态新颖性来驱动探索,并通过将状态空间作为基于非参数标志的图形来实现高级规划。我们进一步利用SF直接计算地标遍历的目标条件调节策略,我们用于在探索状态空间边缘执行计划“前沿”地标。我们在我们的Minigrid和VizDoom进行了实验,即SFL可以高效地探索大型高维状态空间和优于长地平线GCRL任务的最先进的基线。
translated by 谷歌翻译
一个沿着城市街道行走的人试图对世界各个方面进行建模,这很快就会被许多商店,汽车和人们遵循自己的复杂且难以理解的动态所淹没。在这种环境中的探索和导航是一项日常任务,不需要大量精神资源。是否可以将这种感官信息的消防软管转变为最小的潜在状态,这是代理在世界上成功采取行动的必要和足够的?我们具体地提出了这个问题,并提出了可控制的状态发现算法(AC-State),该算法具有理论保证,并且实际上被证明可以发现\ textit {最小可控的潜在状态},其中包含所有用于控制控制的信息代理,同时完全丢弃所有无关的信息。该算法由一个具有信息瓶颈的多步逆模型(预测遥远观察结果的动作)组成。 AC-State可以在没有奖励或示威的情况下实现本地化,探索和导航。我们证明了在三个领域中发现可控潜在状态的发现:将机器人组分散注意力(例如,照明条件和背景变化),与其他代理商一起在迷宫中进行探索,并在Matterport House Simulator中导航。
translated by 谷歌翻译
We introduce Procgen Benchmark, a suite of 16 procedurally generated game-like environments designed to benchmark both sample efficiency and generalization in reinforcement learning. We believe that the community will benefit from increased access to high quality training environments, and we provide detailed experimental protocols for using this benchmark. We empirically demonstrate that diverse environment distributions are essential to adequately train and evaluate RL agents, thereby motivating the extensive use of procedural content generation. We then use this benchmark to investigate the effects of scaling model size, finding that larger models significantly improve both sample efficiency and generalization.
translated by 谷歌翻译
在加强学习算法中纳入先前知识主要是一个开放的问题。即使有关环境动态的见解,也可以在Tabula Rasa设置中使用加固学习,并且必须从头开始探索和学习所有内容。在本文中,我们考虑利用对动作序列等价的前沿的问题:即,当不同的行动序列产生相同的效果时。我们提出了一种新的本地探索策略,以最大限度地减少碰撞并最大限度地提高新的国家审视。我们表明,通过解决凸优化问题,可以几乎没有成本计算该策略。通过在DQN中取代通常的epsilon贪婪策略,我们在具有各种动态结构的若干环境中展示了其潜力。
translated by 谷歌翻译