增强学习(RL)研究领域非常活跃,并具有重要的新贡献;特别是考虑到深RL(DRL)的新兴领域。但是,仍然需要解决许多科学和技术挑战,其中我们可以提及抽象行动的能力或在稀疏回报环境中探索环境的难以通过内在动机(IM)来解决的。我们建议通过基于信息理论的新分类法调查这些研究工作:我们在计算上重新审视了惊喜,新颖性和技能学习的概念。这使我们能够确定方法的优势和缺点,并展示当前的研究前景。我们的分析表明,新颖性和惊喜可以帮助建立可转移技能的层次结构,从而进一步抽象环境并使勘探过程更加健壮。
translated by 谷歌翻译
深度强化学习(DRL)和深度多机构的强化学习(MARL)在包括游戏AI,自动驾驶汽车,机器人技术等各种领域取得了巨大的成功。但是,众所周知,DRL和Deep MARL代理的样本效率低下,即使对于相对简单的问题设置,通常也需要数百万个相互作用,从而阻止了在实地场景中的广泛应用和部署。背后的一个瓶颈挑战是众所周知的探索问题,即如何有效地探索环境和收集信息丰富的经验,从而使政策学习受益于最佳研究。在稀疏的奖励,吵闹的干扰,长距离和非平稳的共同学习者的复杂环境中,这个问题变得更加具有挑战性。在本文中,我们对单格和多代理RL的现有勘探方法进行了全面的调查。我们通过确定有效探索的几个关键挑战开始调查。除了上述两个主要分支外,我们还包括其他具有不同思想和技术的著名探索方法。除了算法分析外,我们还对一组常用基准的DRL进行了全面和统一的经验比较。根据我们的算法和实证研究,我们终于总结了DRL和Deep Marl中探索的公开问题,并指出了一些未来的方向。
translated by 谷歌翻译
建立可以探索开放式环境的自主机器,发现可能的互动,自主构建技能的曲目是人工智能的一般目标。发展方法争辩说,这只能通过可以生成,选择和学习解决自己问题的自主和本质上动机的学习代理人来实现。近年来,我们已经看到了发育方法的融合,特别是发展机器人,具有深度加强学习(RL)方法,形成了发展机器学习的新领域。在这个新域中,我们在这里审查了一组方法,其中深入RL算法训练,以解决自主获取的开放式曲目的发展机器人问题。本质上动机的目标条件RL算法训练代理商学习代表,产生和追求自己的目标。自我生成目标需要学习紧凑的目标编码以及它们的相关目标 - 成就函数,这导致与传统的RL算法相比,这导致了新的挑战,该算法设计用于使用外部奖励信号解决预定义的目标集。本文提出了在深度RL和发育方法的交叉口中进行了这些方法的类型,调查了最近的方法并讨论了未来的途径。
translated by 谷歌翻译
The past few years have seen rapid progress in combining reinforcement learning (RL) with deep learning. Various breakthroughs ranging from games to robotics have spurred the interest in designing sophisticated RL algorithms and systems. However, the prevailing workflow in RL is to learn tabula rasa, which may incur computational inefficiency. This precludes continuous deployment of RL algorithms and potentially excludes researchers without large-scale computing resources. In many other areas of machine learning, the pretraining paradigm has shown to be effective in acquiring transferable knowledge, which can be utilized for a variety of downstream tasks. Recently, we saw a surge of interest in Pretraining for Deep RL with promising results. However, much of the research has been based on different experimental settings. Due to the nature of RL, pretraining in this field is faced with unique challenges and hence requires new design principles. In this survey, we seek to systematically review existing works in pretraining for deep reinforcement learning, provide a taxonomy of these methods, discuss each sub-field, and bring attention to open problems and future directions.
translated by 谷歌翻译
Deep reinforcement learning is poised to revolutionise the field of AI and represents a step towards building autonomous systems with a higher level understanding of the visual world. Currently, deep learning is enabling reinforcement learning to scale to problems that were previously intractable, such as learning to play video games directly from pixels. Deep reinforcement learning algorithms are also applied to robotics, allowing control policies for robots to be learned directly from camera inputs in the real world. In this survey, we begin with an introduction to the general field of reinforcement learning, then progress to the main streams of value-based and policybased methods. Our survey will cover central algorithms in deep reinforcement learning, including the deep Q-network, trust region policy optimisation, and asynchronous advantage actor-critic. In parallel, we highlight the unique advantages of deep neural networks, focusing on visual understanding via reinforcement learning. To conclude, we describe several current areas of research within the field.
translated by 谷歌翻译
代理商学习广泛适用和通用策略具有重要意义,可以实现包括图像和文本描述在内的各种目标。考虑到这类感知的目标,深度加强学习研究的前沿是学习一个没有手工制作奖励的目标条件政策。要了解这种政策,最近的作品通常会像奖励到明确的嵌入空间中的给定目标的非参数距离。从不同的观点来看,我们提出了一种新的无监督学习方法,名为目标条件政策,具有内在动机(GPIM),共同学习抽象级别政策和目标条件的政策。摘要级别策略在潜在变量上被调节,以优化鉴别器,并发现进一步的不同状态,进一步呈现为目标条件策略的感知特定目标。学习鉴别者作为目标条件策略的内在奖励功能,以模仿抽象级别政策引起的轨迹。各种机器人任务的实验证明了我们所提出的GPIM方法的有效性和效率,其基本上优于现有技术。
translated by 谷歌翻译
当加强学习以稀疏的奖励应用时,代理必须花费很长时间探索未知环境而没有任何学习信号。抽象是一种为代理提供在潜在空间中过渡的内在奖励的方法。先前的工作着重于密集的连续潜在空间,或要求用户手动提供表示形式。我们的方法是第一个自动学习基础环境的离散抽象的方法。此外,我们的方法使用端到端可训练的正规后继代表模型在任意输入空间上起作用。对于抽象状态之间的过渡,我们以选项的形式训练一组时间扩展的动作,即动作抽象。我们提出的算法,离散的国家行动抽象(DSAA),在训练这些选项之间进行迭代交换,并使用它们有效地探索更多环境以改善状态抽象。结果,我们的模型不仅对转移学习,而且在在线学习环境中有用。我们从经验上表明,与基线加强学习算法相比,我们的代理能够探索环境并更有效地解决任务。我们的代码可在\ url {https://github.com/amnonattali/dsaa}上公开获得。
translated by 谷歌翻译
Adequately assigning credit to actions for future outcomes based on their contributions is a long-standing open challenge in Reinforcement Learning. The assumptions of the most commonly used credit assignment method are disadvantageous in tasks where the effects of decisions are not immediately evident. Furthermore, this method can only evaluate actions that have been selected by the agent, making it highly inefficient. Still, no alternative methods have been widely adopted in the field. Hindsight Credit Assignment is a promising, but still unexplored candidate, which aims to solve the problems of both long-term and counterfactual credit assignment. In this thesis, we empirically investigate Hindsight Credit Assignment to identify its main benefits, and key points to improve. Then, we apply it to factored state representations, and in particular to state representations based on the causal structure of the environment. In this setting, we propose a variant of Hindsight Credit Assignment that effectively exploits a given causal structure. We show that our modification greatly decreases the workload of Hindsight Credit Assignment, making it more efficient and enabling it to outperform the baseline credit assignment method on various tasks. This opens the way to other methods based on given or learned causal structures.
translated by 谷歌翻译
无监督的强化学习(RL)研究如何利用环境统计,在没有奖励工程成本的情况下学习有用的行为。然而,无监督的RL中的中央挑战是提取有意义地影响世界的行为,并涵盖可能的结果的范围,而不会被环境中固有的不可预测,无法控制和随机元素分散。为此,我们提出了一种无监督的RL方法,该方法是基于两项政策(我们呼叫探索和控制)之间的对手游戏而设计的高维,随机环境,控制单个身体并在观察熵的数量上竞争代理体验。探索代理寻求最大惊喜控制代理的状态,这反过来旨在最大限度地减少惊喜,从而操纵环境以返回熟悉和可预测的状态。这两项政策之间的竞争驱使他们寻求越来越令人惊讶的环境,同时学习掌握它们。我们正式显示所得算法,最大化块MDP的底层状态的覆盖率,随机观察,提供了对我们假设的理论备份,即该程序避免了无法控制和随机分心。我们的实验进一步表明对抗性惊喜导致复杂和有意义的技能的出现,并且在勘探和零射击转移到下游任务方面优于最先进的无监督的加强学习方法。
translated by 谷歌翻译
尽管深度强化学习(RL)最近取得了许多成功,但其方法仍然效率低下,这使得在数据方面解决了昂贵的许多问题。我们的目标是通过利用未标记的数据中的丰富监督信号来进行学习状态表示,以解决这一问题。本文介绍了三种不同的表示算法,可以访问传统RL算法使用的数据源的不同子集使用:(i)GRICA受到独立组件分析(ICA)的启发,并训练深层神经网络以输出统计独立的独立特征。输入。 Grica通过最大程度地减少每个功能与其他功能之间的相互信息来做到这一点。此外,格里卡仅需要未分类的环境状态。 (ii)潜在表示预测(LARP)还需要更多的上下文:除了要求状态作为输入外,它还需要先前的状态和连接它们的动作。该方法通过预测当前状态和行动的环境的下一个状态来学习状态表示。预测器与图形搜索算法一起使用。 (iii)重新培训通过训练深层神经网络来学习国家表示,以学习奖励功能的平滑版本。该表示形式用于预处理输入到深度RL,而奖励预测指标用于奖励成型。此方法仅需要环境中的状态奖励对学习表示表示。我们发现,每种方法都有其优势和缺点,并从我们的实验中得出结论,包括无监督的代表性学习在RL解决问题的管道中可以加快学习的速度。
translated by 谷歌翻译
这篇综述解决了在深度强化学习(DRL)背景下学习测量数据的抽象表示的问题。尽管数据通常是模棱两可,高维且复杂的解释,但许多动态系统可以通过一组低维状态变量有效地描述。从数据中发现这些状态变量是提高数据效率,稳健性和DRL方法的概括,应对维度的诅咒以及将可解释性和见解带入Black-Box DRL的关键方面。这篇综述通过描述用于学习世界的学习代表的主要深度学习工具,提供对方法和原则的系统观点,总结应用程序,基准和评估策略,并讨论开放的方式,从而提供了DRL中无监督的代表性学习的全面概述,挑战和未来的方向。
translated by 谷歌翻译
在本文中,我们介绍了潜在的探索(LGE),这是一种基于探索加固学习(RL)的探索范式的简单而通用的方法。最初引入了Go-explore,并具有强大的域知识约束,以将状态空间划分为单元。但是,在大多数实际情况下,从原始观察中汲取域知识是复杂而乏味的。如果细胞分配不足以提供信息,则可以完全无法探索环境。我们认为,可以通过利用学习的潜在表示,可以将Go-explore方法推广到任何环境,而无需细胞。因此,我们表明LGE可以灵活地与学习潜在表示的任何策略相结合。我们表明,LGE虽然比Go-explore更简单,但在多个硬探索环境上纯粹的探索方面,更强大,并且优于所有最先进的算法。 LGE实现可在https://github.com/qgallouedec/lge上作为开源。
translated by 谷歌翻译
我们提出了一种层次结构的增强学习方法Hidio,可以以自我监督的方式学习任务不合时宜的选项,同时共同学习利用它们来解决稀疏的奖励任务。与当前倾向于制定目标的低水平任务或预定临时的低级政策不同的层次RL方法不同,Hidio鼓励下级选项学习与手头任务无关,几乎不需要假设或很少的知识任务结构。这些选项是通过基于选项子对象的固有熵最小化目标来学习的。博学的选择是多种多样的,任务不可能的。在稀疏的机器人操作和导航任务的实验中,Hidio比常规RL基准和两种最先进的层次RL方法,其样品效率更高。
translated by 谷歌翻译
Intrinsic motivation is a promising exploration technique for solving reinforcement learning tasks with sparse or absent extrinsic rewards. There exist two technical challenges in implementing intrinsic motivation: 1) how to design a proper intrinsic objective to facilitate efficient exploration; and 2) how to combine the intrinsic objective with the extrinsic objective to help find better solutions. In the current literature, the intrinsic objectives are all designed in a task-agnostic manner and combined with the extrinsic objective via simple addition (or used by itself for reward-free pre-training). In this work, we show that these designs would fail in typical sparse-reward continuous control tasks. To address the problem, we propose Constrained Intrinsic Motivation (CIM) to leverage readily attainable task priors to construct a constrained intrinsic objective, and at the same time, exploit the Lagrangian method to adaptively balance the intrinsic and extrinsic objectives via a simultaneous-maximization framework. We empirically show, on multiple sparse-reward continuous control tasks, that our CIM approach achieves greatly improved performance and sample efficiency over state-of-the-art methods. Moreover, the key techniques of our CIM can also be plugged into existing methods to boost their performances.
translated by 谷歌翻译
在本文中,我们提出了一种新的马尔可夫决策过程学习分层表示的方法。我们的方法通过将状态空间划分为子集,并定义用于在分区之间执行转换的子任务。我们制定将状态空间作为优化问题分区的问题,该优化问题可以使用梯度下降给出一组采样的轨迹来解决,使我们的方法适用于大状态空间的高维问题。我们经验验证方法,通过表示它可以成功地在导航域中成功学习有用的分层表示。一旦了解到,分层表示可以用于解决给定域中的不同任务,从而概括跨任务的知识。
translated by 谷歌翻译
The reinforcement learning paradigm is a popular way to address problems that have only limited environmental feedback, rather than correctly labeled examples, as is common in other machine learning contexts. While significant progress has been made to improve learning in a single task, the idea of transfer learning has only recently been applied to reinforcement learning tasks. The core idea of transfer is that experience gained in learning to perform one task can help improve learning performance in a related, but different, task. In this article we present a framework that classifies transfer learning methods in terms of their capabilities and goals, and then use it to survey the existing literature, as well as to suggest future directions for transfer learning work.
translated by 谷歌翻译
与一组复杂的RL问题有关的目标条件加固学习(GCRL)训练代理在特定情况下实现不同的目标。与仅根据州或观察结果了解政策的标准RL解决方案相比,GCRL还要求代理商根据不同的目标做出决策。在这项调查中,我们对GCRL的挑战和算法进行了全面的概述。首先,我们回答该领域研究的基本问题。然后,我们解释了如何代表目标并介绍如何从不同角度设计现有解决方案。最后,我们得出结论,并讨论最近研究重点的潜在未来前景。
translated by 谷歌翻译
With the development of deep representation learning, the domain of reinforcement learning (RL) has become a powerful learning framework now capable of learning complex policies in high dimensional environments. This review summarises deep reinforcement learning (DRL) algorithms and provides a taxonomy of automated driving tasks where (D)RL methods have been employed, while addressing key computational challenges in real world deployment of autonomous driving agents. It also delineates adjacent domains such as behavior cloning, imitation learning, inverse reinforcement learning that are related but are not classical RL algorithms. The role of simulators in training agents, methods to validate, test and robustify existing solutions in RL are discussed.
translated by 谷歌翻译
强化学习(RL)和脑电脑接口(BCI)是过去十年一直在增长的两个领域。直到最近,这些字段彼此独立操作。随着对循环(HITL)应用的兴趣升高,RL算法已经适用于人类指导,从而产生互动强化学习(IRL)的子领域。相邻的,BCI应用一直很感兴趣在人机交互期间从神经活动中提取内在反馈。这两个想法通过将BCI集成到IRL框架中,将RL和BCI设置在碰撞过程中,通过将内在反馈可用于帮助培训代理商来帮助框架。这种交叉点被称为内在的IRL。为了进一步帮助,促进BCI和IRL的更深层次,我们对内在IRILL的审查有着重点在于其母体领域的反馈驱动的IRL,同时还提供有关有效性,挑战和未来研究方向的讨论。
translated by 谷歌翻译
有效推论是一种数学框架,它起源于计算神经科学,作为大脑如何实现动作,感知和学习的理论。最近,已被证明是在不确定性下存在国家估算和控制问题的有希望的方法,以及一般的机器人和人工代理人的目标驱动行为的基础。在这里,我们审查了最先进的理论和对国家估计,控制,规划和学习的积极推断的实现;描述当前的成就,特别关注机器人。我们展示了相关实验,以适应,泛化和稳健性而言说明其潜力。此外,我们将这种方法与其他框架联系起来,并讨论其预期的利益和挑战:使用变分贝叶斯推理具有功能生物合理性的统一框架。
translated by 谷歌翻译