任务 - 无人探索的常见方法学习塔杜拉 - RASA - 代理商假设隔离环境,没有先验的知识或经验。然而,在现实世界中,代理商在许多环境中学习,并且随着他们探索新的环境,始终伴随着事先经验。探索是一场终身的过程。在本文中,我们提出了对任务无关探索的制定和评估的范式变迁。在此设置中,代理首先学会在许多环境中探索,没有任何外在目标的任务不可行的方式。后来,代理商有效地传输了学习探索政策,以便在解决任务时更好地探索新环境。在这方面,我们评估了几种基线勘探战略,并提出了一种简单但有效的学习任务无关探索政策方法。我们的主要思想是,有两种勘探组成部分:(1)基于代理人的信仰,促进探索探索环境的经验主义部分; (2)以环境为中心的组件,鼓励探索固有的有趣物体。我们表明我们的配方是有效的,并提供多种训练测试环境对的最一致的探索。我们还介绍了评估任务无关勘探策略的基准和指标。源代码在https://github.com/sparisi/cbet/处获得。
translated by 谷歌翻译
在终生学习中,代理人在整个生命中都在不重复的一生中学习,就像人类一样,在不断变化的环境中。因此,终身学习带来了许多研究问题,例如连续领域的转移,这导致了非平稳的奖励和环境动态。由于其连续的性质,这些非平稳性很难检测和应对。因此,需要探索策略和学习方法,这些方法能够跟踪稳定的领域变化并适应它们。我们提出反应性探索,以跟踪和反应终生增强学习中持续的域转移,并相应地更新策略。为此,我们进行实验以研究不同的勘探策略。我们从经验上表明,政策阶级家族的代表更适合终身学习,因为它们比Q学习更快地适应了分销的变化。因此,政策梯度方法从反应性探索中获利最大,并在终身学习中显示出良好的结果,并进行了持续的领域变化。我们的代码可在以下网址提供:https://github.com/ml-jku/reactive-ecploration。
translated by 谷歌翻译
In many real-world scenarios, rewards extrinsic to the agent are extremely sparse, or absent altogether. In such cases, curiosity can serve as an intrinsic reward signal to enable the agent to explore its environment and learn skills that might be useful later in its life. We formulate curiosity as the error in an agent's ability to predict the consequence of its own actions in a visual feature space learned by a self-supervised inverse dynamics model. Our formulation scales to high-dimensional continuous state spaces like images, bypasses the difficulties of directly predicting pixels, and, critically, ignores the aspects of the environment that cannot affect the agent. The proposed approach is evaluated in two environments: VizDoom and Super Mario Bros. Three broad settings are investigated: 1) sparse extrinsic reward, where curiosity allows for far fewer interactions with the environment to reach the goal; 2) exploration with no extrinsic reward, where curiosity pushes the agent to explore more efficiently; and 3) generalization to unseen scenarios (e.g. new levels of the same game) where the knowledge gained from earlier experience helps the agent explore new places much faster than starting from scratch.
translated by 谷歌翻译
Effectively exploring the environment is a key challenge in reinforcement learning (RL). We address this challenge by defining a novel intrinsic reward based on a foundation model, such as contrastive language image pretraining (CLIP), which can encode a wealth of domain-independent semantic visual-language knowledge about the world. Specifically, our intrinsic reward is defined based on pre-trained CLIP embeddings without any fine-tuning or learning on the target RL task. We demonstrate that CLIP-based intrinsic rewards can drive exploration towards semantically meaningful states and outperform state-of-the-art methods in challenging sparse-reward procedurally-generated environments.
translated by 谷歌翻译
增强学习(RL)研究领域非常活跃,并具有重要的新贡献;特别是考虑到深RL(DRL)的新兴领域。但是,仍然需要解决许多科学和技术挑战,其中我们可以提及抽象行动的能力或在稀疏回报环境中探索环境的难以通过内在动机(IM)来解决的。我们建议通过基于信息理论的新分类法调查这些研究工作:我们在计算上重新审视了惊喜,新颖性和技能学习的概念。这使我们能够确定方法的优势和缺点,并展示当前的研究前景。我们的分析表明,新颖性和惊喜可以帮助建立可转移技能的层次结构,从而进一步抽象环境并使勘探过程更加健壮。
translated by 谷歌翻译
Reinforcement Learning has emerged as a strong alternative to solve optimization tasks efficiently. The use of these algorithms highly depends on the feedback signals provided by the environment in charge of informing about how good (or bad) the decisions made by the learned agent are. Unfortunately, in a broad range of problems the design of a good reward function is not trivial, so in such cases sparse reward signals are instead adopted. The lack of a dense reward function poses new challenges, mostly related to exploration. Imitation Learning has addressed those problems by leveraging demonstrations from experts. In the absence of an expert (and its subsequent demonstrations), an option is to prioritize well-suited exploration experiences collected by the agent in order to bootstrap its learning process with good exploration behaviors. However, this solution highly depends on the ability of the agent to discover such trajectories in the early stages of its learning process. To tackle this issue, we propose to combine imitation learning with intrinsic motivation, two of the most widely adopted techniques to address problems with sparse reward. In this work intrinsic motivation is used to encourage the agent to explore the environment based on its curiosity, whereas imitation learning allows repeating the most promising experiences to accelerate the learning process. This combination is shown to yield an improved performance and better generalization in procedurally-generated environments, outperforming previously reported self-imitation learning methods and achieving equal or better sample efficiency with respect to intrinsic motivation in isolation.
translated by 谷歌翻译
Adequately assigning credit to actions for future outcomes based on their contributions is a long-standing open challenge in Reinforcement Learning. The assumptions of the most commonly used credit assignment method are disadvantageous in tasks where the effects of decisions are not immediately evident. Furthermore, this method can only evaluate actions that have been selected by the agent, making it highly inefficient. Still, no alternative methods have been widely adopted in the field. Hindsight Credit Assignment is a promising, but still unexplored candidate, which aims to solve the problems of both long-term and counterfactual credit assignment. In this thesis, we empirically investigate Hindsight Credit Assignment to identify its main benefits, and key points to improve. Then, we apply it to factored state representations, and in particular to state representations based on the causal structure of the environment. In this setting, we propose a variant of Hindsight Credit Assignment that effectively exploits a given causal structure. We show that our modification greatly decreases the workload of Hindsight Credit Assignment, making it more efficient and enabling it to outperform the baseline credit assignment method on various tasks. This opens the way to other methods based on given or learned causal structures.
translated by 谷歌翻译
尽管深度强化学习(RL)最近取得了许多成功,但其方法仍然效率低下,这使得在数据方面解决了昂贵的许多问题。我们的目标是通过利用未标记的数据中的丰富监督信号来进行学习状态表示,以解决这一问题。本文介绍了三种不同的表示算法,可以访问传统RL算法使用的数据源的不同子集使用:(i)GRICA受到独立组件分析(ICA)的启发,并训练深层神经网络以输出统计独立的独立特征。输入。 Grica通过最大程度地减少每个功能与其他功能之间的相互信息来做到这一点。此外,格里卡仅需要未分类的环境状态。 (ii)潜在表示预测(LARP)还需要更多的上下文:除了要求状态作为输入外,它还需要先前的状态和连接它们的动作。该方法通过预测当前状态和行动的环境的下一个状态来学习状态表示。预测器与图形搜索算法一起使用。 (iii)重新培训通过训练深层神经网络来学习国家表示,以学习奖励功能的平滑版本。该表示形式用于预处理输入到深度RL,而奖励预测指标用于奖励成型。此方法仅需要环境中的状态奖励对学习表示表示。我们发现,每种方法都有其优势和缺点,并从我们的实验中得出结论,包括无监督的代表性学习在RL解决问题的管道中可以加快学习的速度。
translated by 谷歌翻译
深度强化学习(DRL)和深度多机构的强化学习(MARL)在包括游戏AI,自动驾驶汽车,机器人技术等各种领域取得了巨大的成功。但是,众所周知,DRL和Deep MARL代理的样本效率低下,即使对于相对简单的问题设置,通常也需要数百万个相互作用,从而阻止了在实地场景中的广泛应用和部署。背后的一个瓶颈挑战是众所周知的探索问题,即如何有效地探索环境和收集信息丰富的经验,从而使政策学习受益于最佳研究。在稀疏的奖励,吵闹的干扰,长距离和非平稳的共同学习者的复杂环境中,这个问题变得更加具有挑战性。在本文中,我们对单格和多代理RL的现有勘探方法进行了全面的调查。我们通过确定有效探索的几个关键挑战开始调查。除了上述两个主要分支外,我们还包括其他具有不同思想和技术的著名探索方法。除了算法分析外,我们还对一组常用基准的DRL进行了全面和统一的经验比较。根据我们的算法和实证研究,我们终于总结了DRL和Deep Marl中探索的公开问题,并指出了一些未来的方向。
translated by 谷歌翻译
众所周知,在漫长的地平线和稀疏的奖励任务中,加强学习(RL)是困难的,需要大量的培训步骤。加快该过程的标准解决方案是利用额外的奖励信号,将其塑造以更好地指导学习过程。在语言条件的RL的背景下,语言输入的抽象和概括属性为更有效地塑造奖励的方式提供了机会。在本文中,我们利用这一想法并提出了一种自动奖励塑形方法,代理商从一般语言目标中提取辅助目标。这些辅助目标使用问题生成(QG)和问题答案(QA)系统:它们包括导致代理商尝试使用其自己的轨迹重建有关全球目标的部分信息的问题。当它成功时,它会获得与对答案的信心成正比的内在奖励。这激励代理生成轨迹,这些轨迹明确解释了一般语言目标的各个方面。我们的实验研究表明,这种方法不需要工程师干预来设计辅助目标,可以通过有效指导探索来提高样品效率。
translated by 谷歌翻译
为了解决艰巨的任务,人类提出问题以从外部来源获取知识。相反,经典的加强学习者缺乏这种能力,并且常常诉诸探索性行为。这会加剧,因为很少的当今环境支持查询知识。为了研究如何通过语言教授代理来查询外部知识,我们首先介绍了两个新环境:基于网格世界的Q-babyai和基于文本的Q-Textworld。除了物理互动外,代理还可以查询专门针对这些环境的外部知识源来收集信息。其次,我们提出了“寻求知识”(AFK)代理,该代理学会生成语言命令以查询有助于解决任务的有意义的知识。 AFK利用非参数记忆,指针机制和情节探索奖金来解决(1)无关的信息,(2)一个较大的查询语言空间,(3)延迟奖励有意义的查询。广泛的实验表明,AFK代理在具有挑战性的Q-Babyai和Q-Textworld环境方面优于最近的基线。
translated by 谷歌翻译
无监督的强化学习(RL)研究如何利用环境统计,在没有奖励工程成本的情况下学习有用的行为。然而,无监督的RL中的中央挑战是提取有意义地影响世界的行为,并涵盖可能的结果的范围,而不会被环境中固有的不可预测,无法控制和随机元素分散。为此,我们提出了一种无监督的RL方法,该方法是基于两项政策(我们呼叫探索和控制)之间的对手游戏而设计的高维,随机环境,控制单个身体并在观察熵的数量上竞争代理体验。探索代理寻求最大惊喜控制代理的状态,这反过来旨在最大限度地减少惊喜,从而操纵环境以返回熟悉和可预测的状态。这两项政策之间的竞争驱使他们寻求越来越令人惊讶的环境,同时学习掌握它们。我们正式显示所得算法,最大化块MDP的底层状态的覆盖率,随机观察,提供了对我们假设的理论备份,即该程序避免了无法控制和随机分心。我们的实验进一步表明对抗性惊喜导致复杂和有意义的技能的出现,并且在勘探和零射击转移到下游任务方面优于最先进的无监督的加强学习方法。
translated by 谷歌翻译
We study the use of model-based reinforcement learning methods, in particular, world models for continual reinforcement learning. In continual reinforcement learning, an agent is required to solve one task and then another sequentially while retaining performance and preventing forgetting on past tasks. World models offer a task-agnostic solution: they do not require knowledge of task changes. World models are a straight-forward baseline for continual reinforcement learning for three main reasons. Firstly, forgetting in the world model is prevented by persisting existing experience replay buffers across tasks, experience from previous tasks is replayed for learning the world model. Secondly, they are sample efficient. Thirdly and finally, they offer a task-agnostic exploration strategy through the uncertainty in the trajectories generated by the world model. We show that world models are a simple and effective continual reinforcement learning baseline. We study their effectiveness on Minigrid and Minihack continual reinforcement learning benchmarks and show that it outperforms state of the art task-agnostic continual reinforcement learning methods.
translated by 谷歌翻译
最近的视听导航工作是无噪音音频环境中的单一静态声音,并努力推广到闻名声音。我们介绍了一种新型动态视听导航基准测试,其中一个体现的AI代理必须在存在分散的人和嘈杂的声音存在下在未映射的环境中捕获移动声源。我们提出了一种依赖于多模态架构的端到端增强学习方法,该方法依赖于融合来自双耳音频信号和空间占用映射的空间视听信息,以编码为我们的新的稳健导航策略进行编码所需的功能复杂的任务设置。我们展示了我们的方法优于当前的最先进状态,以更好地推广到闻名声音以及对嘈杂的3D扫描现实世界数据集副本和TASTPORT3D上的嘈杂情景更好地对嘈杂的情景进行了更好的稳健性,以实现静态和动态的视听导航基准。我们的小型基准将在http://dav-nav.cs.uni-freiburg.de提供。
translated by 谷歌翻译
建立可以探索开放式环境的自主机器,发现可能的互动,自主构建技能的曲目是人工智能的一般目标。发展方法争辩说,这只能通过可以生成,选择和学习解决自己问题的自主和本质上动机的学习代理人来实现。近年来,我们已经看到了发育方法的融合,特别是发展机器人,具有深度加强学习(RL)方法,形成了发展机器学习的新领域。在这个新域中,我们在这里审查了一组方法,其中深入RL算法训练,以解决自主获取的开放式曲目的发展机器人问题。本质上动机的目标条件RL算法训练代理商学习代表,产生和追求自己的目标。自我生成目标需要学习紧凑的目标编码以及它们的相关目标 - 成就函数,这导致与传统的RL算法相比,这导致了新的挑战,该算法设计用于使用外部奖励信号解决预定义的目标集。本文提出了在深度RL和发育方法的交叉口中进行了这些方法的类型,调查了最近的方法并讨论了未来的途径。
translated by 谷歌翻译
Learning goal-directed behavior in environments with sparse feedback is a major challenge for reinforcement learning algorithms. The primary difficulty arises due to insufficient exploration, resulting in an agent being unable to learn robust value functions. Intrinsically motivated agents can explore new behavior for its own sake rather than to directly solve problems. Such intrinsic behaviors could eventually help the agent solve tasks posed by the environment. We present hierarchical-DQN (h-DQN), a framework to integrate hierarchical value functions, operating at different temporal scales, with intrinsically motivated deep reinforcement learning. A top-level value function learns a policy over intrinsic goals, and a lower-level function learns a policy over atomic actions to satisfy the given goals. h-DQN allows for flexible goal specifications, such as functions over entities and relations. This provides an efficient space for exploration in complicated environments. We demonstrate the strength of our approach on two problems with very sparse, delayed feedback: (1) a complex discrete stochastic decision process, and (2) the classic ATARI game 'Montezuma's Revenge'.
translated by 谷歌翻译
实践和磨练技能构成了人类学习方式的基本组成部分,但很少专门培训人造代理人来执行它们。取而代之的是,它们通常是端到端训练的,希望有用的技能将被隐含地学习,以最大程度地提高某些外部奖励功能的折扣回报。在本文中,我们研究了如何将技能纳入具有较大州行动空间和稀疏奖励的复杂环境中的加固学习训练中。为此,我们创建了Skillhack,这是Nethack游戏的任务和相关技能的基准。我们评估了该基准测试的许多基准,以及我们自己的新型基于技能的方法层次启动(HKS),该方法的表现优于所有其他评估的方法。我们的实验表明,先验了解有用技能的学习可以显着改善代理在复杂问题上的表现。我们最终认为,利用预定义的技能为RL问题提供了有用的归纳偏见,尤其是那些具有较大国家行动空间和稀疏奖励的问题。
translated by 谷歌翻译
在复杂的协调问题中,深层合作多智能经纪增强学习(Marl)的高效探索仍然依然存在挑战。在本文中,我们介绍了一种具有奇妙驱动的探索的新型情节多功能钢筋学习,称为EMC。我们利用对流行分解的MARL算法的洞察力“诱导的”个体Q值,即用于本地执行的单个实用程序功能,是本地动作观察历史的嵌入,并且可以捕获因奖励而捕获代理之间的相互作用在集中培训期间的反向化。因此,我们使用单独的Q值的预测误差作为协调勘探的内在奖励,利用集肠内存来利用探索的信息经验来提高政策培训。随着代理商的个人Q值函数的动态捕获了国家的新颖性和其他代理人的影响,我们的内在奖励可以促使对新或有前途的国家的协调探索。我们通过教学实例说明了我们的方法的优势,并展示了在星际争霸II微互动基准中挑战任务的最先进的MARL基础上的其显着优势。
translated by 谷歌翻译
Progress in continual reinforcement learning has been limited due to several barriers to entry: missing code, high compute requirements, and a lack of suitable benchmarks. In this work, we present CORA, a platform for Continual Reinforcement Learning Agents that provides benchmarks, baselines, and metrics in a single code package. The benchmarks we provide are designed to evaluate different aspects of the continual RL challenge, such as catastrophic forgetting, plasticity, ability to generalize, and sample-efficient learning. Three of the benchmarks utilize video game environments (Atari, Procgen, NetHack). The fourth benchmark, CHORES, consists of four different task sequences in a visually realistic home simulator, drawn from a diverse set of task and scene parameters. To compare continual RL methods on these benchmarks, we prepare three metrics in CORA: Continual Evaluation, Isolated Forgetting, and Zero-Shot Forward Transfer. Finally, CORA includes a set of performant, open-source baselines of existing algorithms for researchers to use and expand on. We release CORA and hope that the continual RL community can benefit from our contributions, to accelerate the development of new continual RL algorithms.
translated by 谷歌翻译
在加强学习算法中纳入先前知识主要是一个开放的问题。即使有关环境动态的见解,也可以在Tabula Rasa设置中使用加固学习,并且必须从头开始探索和学习所有内容。在本文中,我们考虑利用对动作序列等价的前沿的问题:即,当不同的行动序列产生相同的效果时。我们提出了一种新的本地探索策略,以最大限度地减少碰撞并最大限度地提高新的国家审视。我们表明,通过解决凸优化问题,可以几乎没有成本计算该策略。通过在DQN中取代通常的epsilon贪婪策略,我们在具有各种动态结构的若干环境中展示了其潜力。
translated by 谷歌翻译