计量经济学和机器学习中的各种问题,包括仪器变量回归和钟声残留最小化,可以表达为满足一组条件矩限制(CMR)。我们得出了满足CMR的一般游戏理论策略,该策略可扩展到非线性问题,可与基于梯度的优化相提并论,并且能够考虑有限的样本不确定性。我们恢复了Dikkala等人的方法。和Dai等。作为我们一般框架的特殊情况,请先详细介绍各种扩展,以及如何有效地解决CMR定义的游戏。
translated by 谷歌翻译
我们考虑了具有未知成本函数的大规模马尔可夫决策过程,并解决了从有限一套专家演示学习政策的问题。我们假设学习者不允许与专家互动,并且无法访问任何类型的加固信号。现有的逆钢筋学习方法具有强大的理论保证,但在计算上是昂贵的,而最先进的政策优化算法实现了重大的经验成功,但受到有限的理论理解受到阻碍。为了弥合理论与实践之间的差距,我们使用拉格朗日二元介绍了一种新的Bilinear鞍点框架。所提出的原始双视点允许我们通过随机凸优化的镜头开发出无模型可释放的算法。该方法享有实现,低内存要求和独立于州数量的计算和采样复杂性的优点。我们进一步提出了同等的无悔在线学习解释。
translated by 谷歌翻译
Motivated by the human-machine interaction such as training chatbots for improving customer satisfaction, we study human-guided human-machine interaction involving private information. We model this interaction as a two-player turn-based game, where one player (Alice, a human) guides the other player (Bob, a machine) towards a common goal. Specifically, we focus on offline reinforcement learning (RL) in this game, where the goal is to find a policy pair for Alice and Bob that maximizes their expected total rewards based on an offline dataset collected a priori. The offline setting presents two challenges: (i) We cannot collect Bob's private information, leading to a confounding bias when using standard RL methods, and (ii) a distributional mismatch between the behavior policy used to collect data and the desired policy we aim to learn. To tackle the confounding bias, we treat Bob's previous action as an instrumental variable for Alice's current decision making so as to adjust for the unmeasured confounding. We develop a novel identification result and use it to propose a new off-policy evaluation (OPE) method for evaluating policy pairs in this two-player turn-based game. To tackle the distributional mismatch, we leverage the idea of pessimism and use our OPE method to develop an off-policy learning algorithm for finding a desirable policy pair for both Alice and Bob. Finally, we prove that under mild assumptions such as partial coverage of the offline data, the policy pair obtained through our method converges to the optimal one at a satisfactory rate.
translated by 谷歌翻译
具有很多玩家的非合作和合作游戏具有许多应用程序,但是当玩家数量增加时,通常仍然很棘手。由Lasry和Lions以及Huang,Caines和Malham \'E引入的,平均野外运动会(MFGS)依靠平均场外近似值,以使玩家数量可以成长为无穷大。解决这些游戏的传统方法通常依赖于以完全了解模型的了解来求解部分或随机微分方程。最近,增强学习(RL)似乎有望解决复杂问题。通过组合MFGS和RL,我们希望在人口规模和环境复杂性方面能够大规模解决游戏。在这项调查中,我们回顾了有关学习MFG中NASH均衡的最新文献。我们首先确定最常见的设置(静态,固定和进化)。然后,我们为经典迭代方法(基于最佳响应计算或策略评估)提供了一个通用框架,以确切的方式解决MFG。在这些算法和与马尔可夫决策过程的联系的基础上,我们解释了如何使用RL以无模型的方式学习MFG解决方案。最后,我们在基准问题上介绍了数值插图,并以某些视角得出结论。
translated by 谷歌翻译
我们开发了对对抗估计量(“ A-估计器”)的渐近理论。它们将最大样品型估计量(“ M-估计器”)推广为平均目标,以通过某些参数最大化,而其他参数则最小化。该课程涵盖了瞬间的瞬间通用方法,生成的对抗网络以及机器学习和计量经济学方面的最新建议。在这些示例中,研究人员指出,原则上可以使用哪些方面进行估计,并且对手学习如何最佳地强调它们。我们在重点和部分识别下得出A估计剂的收敛速率,以及其参数功能的正态性。未知功能可以通过筛子(例如深神经网络)近似,我们为此提供简化的低级条件。作为推论,我们获得了神经网络估计剂的正态性,克服了文献先前确定的技术问题。我们的理论产生了有关各种A估计器的新成果,为它们在最近的应用中的成功提供了直觉和正式的理由。
translated by 谷歌翻译
Causal inference is the process of using assumptions, study designs, and estimation strategies to draw conclusions about the causal relationships between variables based on data. This allows researchers to better understand the underlying mechanisms at work in complex systems and make more informed decisions. In many settings, we may not fully observe all the confounders that affect both the treatment and outcome variables, complicating the estimation of causal effects. To address this problem, a growing literature in both causal inference and machine learning proposes to use Instrumental Variables (IV). This paper serves as the first effort to systematically and comprehensively introduce and discuss the IV methods and their applications in both causal inference and machine learning. First, we provide the formal definition of IVs and discuss the identification problem of IV regression methods under different assumptions. Second, we categorize the existing work on IV methods into three streams according to the focus on the proposed methods, including two-stage least squares with IVs, control function with IVs, and evaluation of IVs. For each stream, we present both the classical causal inference methods, and recent developments in the machine learning literature. Then, we introduce a variety of applications of IV methods in real-world scenarios and provide a summary of the available datasets and algorithms. Finally, we summarize the literature, discuss the open problems and suggest promising future research directions for IV methods and their applications. We also develop a toolkit of IVs methods reviewed in this survey at https://github.com/causal-machine-learning-lab/mliv.
translated by 谷歌翻译
因果效应估计对于自然和社会科学中的许多任务很重要。但是,如果没有做出强大的,通常无法测试的假设,就无法从观察数据中识别效果。我们考虑了部分识别问题的算法,当未衡量的混淆使鉴定不可能鉴定时,多变量,连续处理的界限治疗效果。我们考虑一个框架,即可观察的证据与基于规范标准在因果模型中编码的约束的含义相匹配。这纯粹是基于生成模型来概括经典方法。将因果关系施放为在受约束优化问题中的目标函数,我们将灵活的学习算法与蒙特卡洛方法相结合,以随机因果节目的名义实施解决方案家族。特别是,我们提出了可以通过因果或观察到的数据模型而没有可能性功能的参数功能的这种约束优化问题的方式,从而降低了任务的计算和统计复杂性。
translated by 谷歌翻译
Reinforcement learning (RL) is one of the most vibrant research frontiers in machine learning and has been recently applied to solve a number of challenging problems. In this paper, we primarily focus on off-policy evaluation (OPE), one of the most fundamental topics in RL. In recent years, a number of OPE methods have been developed in the statistics and computer science literature. We provide a discussion on the efficiency bound of OPE, some of the existing state-of-the-art OPE methods, their statistical properties and some other related research directions that are currently actively explored.
translated by 谷歌翻译
计算NASH平衡策略是多方面强化学习中的一个核心问题,在理论和实践中都受到广泛关注。但是,到目前为止,可证明的保证金仅限于完全竞争性或合作的场景,或者在大多数实际应用中实现难以满足的强大假设。在这项工作中,我们通过调查Infinite-Horizo​​n \ Emph {对抗性团队Markov Games},这是一场自然而充分动机的游戏,其中一组相同兴奋的玩家 - 在没有任何明确的情况下,这是一个自然而有动机的游戏,这是一场自然而有动机的游戏,而偏离了先前的结果。协调或交流 - 正在与对抗者竞争。这种设置允许对零和马尔可夫潜在游戏进行统一处理,并作为模拟更现实的战略互动的一步,这些互动具有竞争性和合作利益。我们的主要贡献是第一种计算固定$ \ epsilon $ - Approximate Nash Equilibria在对抗性团队马尔可夫游戏中具有计算复杂性的算法,在游戏的所有自然参数中都是多项式的,以及$ 1/\ epsilon $。拟议的算法特别自然和实用,它基于为团队中的每个球员执行独立的政策梯度步骤,并与对手侧面的最佳反应同时;反过来,通过解决精心构造的线性程序来获得对手的政策。我们的分析利用非标准技术来建立具有非convex约束的非线性程序的KKT最佳条件,从而导致对诱导的Lagrange乘数的自然解释。在此过程中,我们大大扩展了冯·斯坦格尔(Von Stengel)和科勒(GEB`97)引起的对抗(正常形式)团队游戏中最佳政策的重要特征。
translated by 谷歌翻译
代理因果学习(PCL)是一种使用代理(结构侧信息)对杂交剂的不观察到的混杂性在存在的情况下估算治疗的原因效果的方法。这是通过两阶段回归实现的:在第一阶段,我们模拟治疗和代理之间的关系;在第二阶段,考虑到代理提供的上下文,我们使用该模型来学习治疗对结果的影响。 PCL保证恢复真正的因果效果,但受到可识别条件。我们提出了一种新颖的PCL方法,深度特征代理可变方法(DFPV),用于解决代理,处理和结果是高维度的,并且具有非线性复杂关系,如深神经网络特征所示。我们展示了DFPV在挑战合成基准上的最近最先进的PCL方法,包括涉及高维图像数据的设置。此外,我们表明PCL可以应用于混淆强盗问题的违规策略评估,其中DFPV也表现出具有竞争性的表现。
translated by 谷歌翻译
强大的增强学习(RL)的目的是学习一项与模型参数不确定性的强大策略。由于模拟器建模错误,随着时间的推移,现实世界系统动力学的变化以及对抗性干扰,参数不确定性通常发生在许多现实世界中的RL应用中。强大的RL通常被称为最大问题问题,其目的是学习最大化价值与不确定性集合中最坏可能的模型的策略。在这项工作中,我们提出了一种称为鲁棒拟合Q-材料(RFQI)的强大RL算法,该算法仅使用离线数据集来学习最佳稳健策略。使用离线数据的强大RL比其非持续性对应物更具挑战性,因为在强大的Bellman运营商中所有模型的最小化。这在离线数据收集,对模型的优化以及公正的估计中构成了挑战。在这项工作中,我们提出了一种系统的方法来克服这些挑战,从而导致了我们的RFQI算法。我们证明,RFQI在标准假设下学习了一项近乎最佳的强大政策,并证明了其在标准基准问题上的出色表现。
translated by 谷歌翻译
离线增强学习(RL)的样本效率保证通常依赖于对功能类别(例如Bellman-Completeness)和数据覆盖范围(例如,全政策浓缩性)的强有力的假设。尽管最近在放松这些假设方面做出了努力,但现有作品只能放松这两个因素之一,从而使另一个因素的强烈假设完好无损。作为一个重要的开放问题,我们是否可以实现对这两个因素的假设较弱的样本效率离线RL?在本文中,我们以积极的态度回答了这个问题。我们基于MDP的原始偶对偶进行分析了一种简单的算法,其中双重变量(打折占用)是使用密度比函数对离线数据进行建模的。通过适当的正则化,我们表明该算法仅在可变性和单极浓缩性下具有多项式样品的复杂性。我们还基于不同的假设提供了替代分析,以阐明离线RL原始二算法的性质。
translated by 谷歌翻译
策略梯度方法适用于复杂的,不理解的,通过对参数化的策略进行随机梯度下降来控制问题。不幸的是,即使对于可以通过标准动态编程技术解决的简单控制问题,策略梯度算法也会面临非凸优化问题,并且被广泛理解为仅收敛到固定点。这项工作确定了结构属性 - 通过几个经典控制问题共享 - 确保策略梯度目标函数尽管是非凸面,但没有次优的固定点。当这些条件得到加强时,该目标满足了产生收敛速率的Polyak-lojasiewicz(梯度优势)条件。当其中一些条件放松时,我们还可以在任何固定点的最佳差距上提供界限。
translated by 谷歌翻译
The intersection of causal inference and machine learning for decision-making is rapidly expanding, but the default decision criterion remains an \textit{average} of individual causal outcomes across a population. In practice, various operational restrictions ensure that a decision-maker's utility is not realized as an \textit{average} but rather as an \textit{output} of a downstream decision-making problem (such as matching, assignment, network flow, minimizing predictive risk). In this work, we develop a new framework for off-policy evaluation with \textit{policy-dependent} linear optimization responses: causal outcomes introduce stochasticity in objective function coefficients. Under this framework, a decision-maker's utility depends on the policy-dependent optimization, which introduces a fundamental challenge of \textit{optimization} bias even for the case of policy evaluation. We construct unbiased estimators for the policy-dependent estimand by a perturbation method, and discuss asymptotic variance properties for a set of adjusted plug-in estimators. Lastly, attaining unbiased policy evaluation allows for policy optimization: we provide a general algorithm for optimizing causal interventions. We corroborate our theoretical results with numerical simulations.
translated by 谷歌翻译
我们解决了在没有观察到的混杂的存在下的因果效应估计的问题,但是观察到潜在混杂因素的代理。在这种情况下,我们提出了两种基于内核的方法,用于非线性因果效应估计:(a)两阶段回归方法,以及(b)最大矩限制方法。我们专注于近端因果学习设置,但是我们的方法可以用来解决以弗雷霍尔姆积分方程为特征的更广泛的逆问题。特别是,我们提供了在非线性环境中解决此问题的两阶段和矩限制方法的统一视图。我们为每种算法提供一致性保证,并证明这些方法在合成数据和模拟现实世界任务的数据上获得竞争结果。特别是,我们的方法优于不适合利用代理变量的早期方法。
translated by 谷歌翻译
我们在无限地平线马尔可夫决策过程中考虑批量(离线)策略学习问题。通过移动健康应用程序的推动,我们专注于学习最大化长期平均奖励的政策。我们为平均奖励提出了一款双重强大估算器,并表明它实现了半导体效率。此外,我们开发了一种优化算法来计算参数化随机策略类中的最佳策略。估计政策的履行是通过政策阶级的最佳平均奖励与估计政策的平均奖励之间的差异来衡量,我们建立了有限样本的遗憾保证。通过模拟研究和促进体育活动的移动健康研究的分析来说明该方法的性能。
translated by 谷歌翻译
因果推理,经济学以及更普遍的一般机器学习中的重要问题可以表示为条件力矩限制,但是估计变得具有挑战性,因为它需要解决无条件的力矩限制的连续性。以前的工作通过将广义的矩(GMM)方法扩展到连续矩限制来解决此问题。相比之下,广义经验可能性(GEL)提供了一个更通用的框架,并且与基于GMM的估计器相比,已显示出具有优惠的小样本特性。为了从机器学习的最新发展中受益,我们提供了可以利用任意模型的凝胶的功能重新重新制定。通过对所得无限尺寸优化问题的双重配方的激励,我们设计了一种实用方法并探索其渐近性能。最后,我们提供基于内核和基于神经网络的估计器实现,这些实现在两个条件矩限制问题上实现了最先进的经验绩效。
translated by 谷歌翻译
我们认为在情节环境中的强化学习(RL)中的遗憾最小化问题。在许多实际的RL环境中,状态和动作空间是连续的或非常大的。现有方法通过随机过渡模型的低维表示或$ q $ functions的近似值来确定遗憾的保证。但是,对国家价值函数的函数近似方案的理解基本上仍然缺失。在本文中,我们提出了一种基于在线模型的RL算法,即CME-RL,该算法将过渡分布的表示形式学习为嵌入在复制的内核希尔伯特领域中的嵌入,同时仔细平衡了利用探索 - 探索权衡取舍。我们通过证明频繁的(最糟糕的)遗憾结束了$ \ tilde {o} \ big(h \ gamma_n \ sqrt {n} \ big)$ \ footnote {$ footnote {$ tilde {$ o}(\ cdot)$仅隐藏绝对常数和poly-logarithmic因素。},其中$ h $是情节长度,$ n $是时间步长的总数,$ \ gamma_n $是信息理论数量国家行动特征空间的有效维度。我们的方法绕过了估计过渡概率的需求,并适用于可以定义内核的任何域。它还为内核方法的一般理论带来了新的见解,以进行近似推断和RL遗憾的最小化。
translated by 谷歌翻译
This paper studies systematic exploration for reinforcement learning with rich observations and function approximation. We introduce a new model called contextual decision processes, that unifies and generalizes most prior settings. Our first contribution is a complexity measure, the Bellman rank , that we show enables tractable learning of near-optimal behavior in these processes and is naturally small for many well-studied reinforcement learning settings. Our second contribution is a new reinforcement learning algorithm that engages in systematic exploration to learn contextual decision processes with low Bellman rank. Our algorithm provably learns near-optimal behavior with a number of samples that is polynomial in all relevant parameters but independent of the number of unique observations. The approach uses Bellman error minimization with optimistic exploration and provides new insights into efficient exploration for reinforcement learning with function approximation.
translated by 谷歌翻译
我们考虑在具有非线性函数近似的两名玩家零和马尔可夫游戏中学习NASH平衡,其中动作值函数通过繁殖内核Hilbert Space(RKHS)中的函数近似。关键挑战是如何在高维函数空间中进行探索。我们提出了一种新颖的在线学习算法,以最大程度地减少双重性差距来找到NASH平衡。我们算法的核心是基于不确定性的乐观原理得出的上和下置信度界限。我们证明,在非常温和的假设上,我们的算法能够获得$ O(\ sqrt {t})$遗憾,并在对奖励功能和马尔可夫游戏的基本动态下进行多项式计算复杂性。我们还提出了我们的算法的几个扩展,包括具有伯恩斯坦型奖励的算法,可以实现更严格的遗憾,以及用于模型错误指定的另一种算法,可以应用于神经功能近似。
translated by 谷歌翻译