由于其二进制和事件驱动的性质,尖峰神经网络(SNNS)可以在具有超高速和超低能量消耗的神经晶体装置上运行。因此,预计SNNS将具有各种应用,包括作为在边缘设备上运行的生成模型,以创建高质量图像。在这项研究中,我们用SNN构建一个变形式自动统计器(VAE)以实现图像生成。 VAE以其生成模型的稳定性而闻名;最近,其质量先进。在香草VAE中,潜伏空间表示为正态分布,并在采样中需要浮点计算。但是,在SNN中不可能,因为所有功能必须是二进制时间序列数据。因此,我们用自回归SNN模型构建了潜在空间,并从其输出中随机选择样本来对潜在变量进行采样。这允许潜在的变量遵循Bernoulli进程并允许变分学习。因此,我们构建了完全尖峰变化的自动化器,其中所有模块都是用SNN构建的。据我们所知,我们是第一个仅使用SNN层构建VAE的人。我们尝试了多个数据集,并确认它可以与传统的ANN相比产生具有相同或更好质量的图像。代码可在https://github.com/kamata1729/fullspikingvae获得
translated by 谷歌翻译
最近,诸如Interovae和S-Introvae之类的内省模型在图像生成和重建任务方面表现出色。内省模型的主要特征是对VAE的对抗性学习,编码器试图区分真实和假(即合成)图像。但是,由于有效度量标准无法评估真实图像和假图像之间的差异,因此后塌陷和消失的梯度问题仍然存在,从而降低了合成图像的保真度。在本文中,我们提出了一种称为对抗性相似性距离内省变化自动编码器(AS-Introvae)的新变体。我们理论上分析了消失的梯度问题,并使用2-Wasserstein距离和内核技巧构建了新的对抗相似性距离(AS-cantance)。随着重量退火,AS-Introvae能够产生稳定和高质量的图像。通过每批次尝试转换图像,以使其更好地适合潜在空间中的先前分布,从而解决了后塌陷问题。与每个图像方法相比,该策略促进了潜在空间中更多样化的分布,从而使我们的模型能够产生巨大的多样性图像。基准数据集的全面实验证明了AS-Introvae对图像生成和重建任务的有效性。
translated by 谷歌翻译
尖峰神经网络(SNNS)模仿大脑中信息传播可以通过离散和稀疏的尖峰来能够能够通过离散和稀疏的尖峰来处理时空信息,从而受到相当大的关注。为了提高SNN的准确性和能源效率,大多数以前的研究仅集中在训练方法上,并且很少研究建筑的效果。我们研究了先前研究中使用的设计选择,从尖峰的准确性和数量来看,发现它们不是最适合SNN的。为了进一步提高准确性并减少SNN产生的尖峰,我们提出了一个称为Autosnn的尖峰感知神经体系结构搜索框架。我们定义一个搜索空间,该搜索空间由架构组成,而没有不良的设计选择。为了启用Spike-Aware Architecture搜索,我们引入了一种健身,该健身既考虑尖峰的准确性和数量。 Autosnn成功地搜索了SNN体系结构,这些体系结构在准确性和能源效率方面都超过了手工制作的SNN。我们彻底证明了AutoSNN在包括神经形态数据集在内的各种数据集上的有效性。
translated by 谷歌翻译
我们如何为神经系统带来隐私和能效?在本文中,我们提出了PrivateNN,旨在从预先训练的ANN模型构建低功耗尖峰神经网络(SNNS),而不会泄漏包含在数据集中的敏感信息。在这里,我们解决两种类型的泄漏问题:1)当网络在Ann-SNN转换过程中访问真实训练数据时,会导致数据泄漏。 2)当类相关的特征可以从网络参数重建时,会导致类泄漏。为了解决数据泄漏问题,我们从预先培训的ANN生成合成图像,并使用所生成的图像将ANN转换为SNNS。然而,转换的SNNS仍然容易受到类泄漏的影响,因为权重参数相对于ANN参数具有相同的(或缩放)值。因此,通过训练SNNS,通过训练基于时间尖峰的学习规则来加密SNN权重。使用时间数据更新权重参数使得SNN难以在空间域中解释。我们观察到,加密的私人没有消除数据和类泄漏问题,略微的性能下降(小于〜2),与标准ANN相比,与标准ANN相比的显着的能效增益(约55倍)。我们对各种数据集进行广泛的实验,包括CiFar10,CiFar100和Tinyimagenet,突出了隐私保留的SNN培训的重要性。
translated by 谷歌翻译
我们提出了一种新的学习算法,使用传统的人工神经网络(ANN)作为代理训练尖刺神经网络(SNN)。我们分别与具有相同网络架构和共享突触权重的集成和火(IF)和Relu神经元进行两次SNN和ANN网络。两个网络的前进通过完全独立。通过假设具有速率编码的神经元作为Relu的近似值,我们将SNN中的SNN的误差进行了回复,以更新共享权重,只需用SNN的ANN最终输出替换ANN最终输出。我们将建议的代理学习应用于深度卷积的SNNS,并在Fahion-Mnist和CiFar10的两个基准数据集上进行评估,分别为94.56%和93.11%的分类准确性。所提出的网络可以优于培训的其他深鼻涕,训练,替代学习,代理梯度学习,或从深处转换。转换的SNNS需要长时间的仿真时间来达到合理的准确性,而我们的代理学习导致高效的SNN,模拟时间较短。
translated by 谷歌翻译
脑启发的尖峰神经网络(SNN)已成功应用于许多模式识别域。基于SNN的深层结构在感知任务(例如图像分类,目标检测)中取得了可观的结果。但是,深SNN在加强学习(RL)任务中的应用仍然是一个问题。尽管以前有关于SNN和RL组合的研究,但其中大多数专注于浅网络的机器人控制问题,或使用ANN-SNN转换方法来实施Spiking Spiking Deep Q Network(SDQN)。在这项工作中,我们数学分析了SDQN中尖峰信号特征消失的问题,并提出了一种基于潜在的层归一化(PBLN)方法,以直接训练尖峰尖峰深度Q网络。实验表明,与最先进的ANN-SNN转换方法和其他SDQN作品相比,建议的PBLN Spiking Deep Q Networks(PL-SDQN)在Atari游戏任务上取得了更好的性能。
translated by 谷歌翻译
由于稀疏,异步和二进制事件(或尖峰)驱动加工,尖峰神经网络(SNNS)最近成为深度学习的替代方案,可以在神经形状硬件上产生巨大的能效益。然而,从划痕训练高精度和低潜伏期的SNN,患有尖刺神经元的非微弱性质。要在SNNS中解决此培训问题,我们重新批准批量标准化,并通过时间(BNTT)技术提出时间批量标准化。大多数先前的SNN工程到现在忽略了批量标准化,认为它无效地训练时间SNN。与以前的作品不同,我们提出的BNTT沿着时轴沿着时间轴解耦的参数,以捕获尖峰的时间动态。在BNTT中的时间上不断发展的可学习参数允许神经元通过不同的时间步长来控制其尖峰率,从头开始实现低延迟和低能量训练。我们对CiFar-10,CiFar-100,微小想象特和事件驱动的DVS-CIFAR10数据集进行实验。 BNTT允许我们首次在三个复杂的数据集中培训深度SNN架构,只需25-30步即可。我们还使用BNTT中的参数分布提前退出算法,以降低推断的延迟,进一步提高了能量效率。
translated by 谷歌翻译
近年来,由于其对复杂分布进行建模的能力,深层生成模型引起了越来越多的兴趣。在这些模型中,变异自动编码器已被证明是计算有效的,并且在多个领域中产生了令人印象深刻的结果。在这一突破之后,为了改善原始出版物而进行了广泛的研究,从而导致各种不同的VAE模型响应不同的任务。在本文中,我们介绍了Pythae,这是一个多功能的开源Python库,既可以提供统一的实现和专用框架,允许直接,可重现且可靠地使用生成自动编码器模型。然后,我们建议使用此库来执行案例研究基准测试标准,在其中我们介绍并比较了19个生成自动编码器模型,代表了下游任务的一些主要改进,例如图像重建,生成,分类,聚类,聚类和插值。可以在https://github.com/clementchadebec/benchmark_vae上找到开源库。
translated by 谷歌翻译
在本文中,我们介绍了拆分变量自动编码器(SVAE)的概念,其输出$ \ hat {x} $作为加权sum $ \ sigma \ odot \ hat {x_1} +(1- \ sigma)两个生成图像的hat {x_2} $ $ \ hat {x_1},\ hat {x_2} $和$ \ sigma $是{\ em lecarne}的构图图。组合图像$ \ hat {x_1},\ hat {x_2} $以及$ \ sigma $ -map由模型自动合成。该网络经常进行训练,通常是变异自动编码器,训练和重建图像之间具有负loglikelihood的损失。 $ \ hat {x_1},\ hat {x_2} $或$ \ sigma $,都不需要额外的损失。分解是非确定性的,但遵循两个主要方案,我们可以将大致分为\ say {stantactic}或\ say {smantic}。在第一种情况下,地图倾向于利用相邻像素之间的强相关性,将图像分为两个互补的高频子图像。在第二种情况下,地图通常集中在对象的轮廓上,以其内容的有趣变体分开图像,并具有更明显和独特的特征。在这种情况下,根据经验观察,$ \ hat {x_1} $和$ \ hat {x_2} $通常比$ \ hat {x {x更好)的fr \'echet Inception Inception Inception距离(fid){x_1} $和$ \ hat {x_2} $通常更低} $,显然是前者的平均值。从某种意义上说,SVAE迫使变异自动编码器做出选择,与替代方案之间的固有趋势相反,其目的是最大程度地减少针对特定样本的重建损失。根据FID指标,我们的技术在MNIST,CIFAR10和CELEBA等典型数据集上进行了测试,使我们能够胜过所有以前所有以前的纯粹构造(不依赖归一化流)。
translated by 谷歌翻译
变形AutoEncoders(VAES)是具有许多域中应用的强大的基于似然的生成模型之一。然而,他们努力产生高质量的图像,尤其是当样品从之前没有任何回火时获得。 VAES生成质量的一个解释是先前孔问题:前提分配不能匹配近似后部的总体近似。由于这种不匹配,在不对应于任何编码图像的之前,存在具有高密度的潜在空间中的区域。来自这些区域的样本被解码为损坏的图像。为了解决这个问题,我们提出了基于能源的基础产品,由基础产品的乘积和重新免除因子,旨在使基座更接近骨料后部。我们通过噪声对比估计训练重重的因素,我们将其概括为具有许多潜在变量组的分层VAE。我们的实验证实,所提出的噪声对比前沿通过MNIST,CIFAR-10,CELEBA 64和Celeba HQ 256数据集的大边缘改善了最先进的VAE的生成性能。我们的方法很简单,可以应用于各种VAE,以提高其先前分配的表现。
translated by 谷歌翻译
在没有监督信号的情况下学习简洁的数据表示是机器学习的基本挑战。实现此目标的一种突出方法是基于可能性的模型,例如变异自动编码器(VAE),以基于元元素来学习潜在表示,这是对下游任务有益的一般前提(例如,disentanglement)。但是,这种方法通常偏离原始的可能性体系结构,以应用引入的元优势,从而导致他们的培训不良变化。在本文中,我们提出了一种新颖的表示学习方法,Gromov-Wasserstein自动编码器(GWAE),该方法与潜在和数据分布直接匹配。 GWAE模型不是基于可能性的目标,而是通过最小化Gromov-Wasserstein(GW)度量的训练优化。 GW度量测量了在无与伦比的空间上支持的分布之间的面向结构的差异,例如具有不同的维度。通过限制可训练的先验的家庭,我们可以介绍元主题来控制下游任务的潜在表示。与现有基于VAE的方法的经验比较表明,GWAE模型可以通过更改先前的家族而无需进一步修改GW目标来基于元家庭学习表示。
translated by 谷歌翻译
Spiking neural networks (SNNs) are receiving increasing attention due to their low power consumption and strong bio-plausibility. Optimization of SNNs is a challenging task. Two main methods, artificial neural network (ANN)-to-SNN conversion and spike-based backpropagation (BP), both have their advantages and limitations. For ANN-to-SNN conversion, it requires a long inference time to approximate the accuracy of ANN, thus diminishing the benefits of SNN. With spike-based BP, training high-precision SNNs typically consumes dozens of times more computational resources and time than their ANN counterparts. In this paper, we propose a novel SNN training approach that combines the benefits of the two methods. We first train a single-step SNN by approximating the neural potential distribution with random noise, then convert the single-step SNN to a multi-step SNN losslessly. The introduction of Gaussian distributed noise leads to a significant gain in accuracy after conversion. The results show that our method considerably reduces the training and inference times of SNNs while maintaining their high accuracy. Compared to the previous two methods, ours can reduce training time by 65%-75% and achieves more than 100 times faster inference speed. We also argue that the neuron model augmented with noise makes it more bio-plausible.
translated by 谷歌翻译
神经形态数据携带由尖峰编码的时空模式的信息。因此,神经形态计算中的核心问题是训练尖峰神经网络(SNNS)以再现时加速时空尖峰图案响应于给定的尖刺刺激。通过将每个输入分配给特定期望的输出尖刺序列,大多数现有方法通过分配每个输入来模拟SNN的输入输出行为。相比之下,为了充分利用尖峰的时间编码能力,这项工作建议训练SNN,以匹配尖刺信号的分布而不是单独的尖峰信号。为此,本文介绍了一种新颖的混合架构,包括通过SNN实现的条件发生器,以及由传统人工神经网络(ANN)实现的鉴别器。 ANN的作用是在遵循生成的对抗网络(GANS)原则的对抗迭代学习策略中对SNN的培训期间提供反馈。为了更好地捕获多模态的时空分布,所提出的方法被称为Spikegan - 进一步扩展到支持发电机重量的贝叶斯学习。最后,通过提出Spikegan的在线元学习变量来解决具有时变统计数据的设置。实验与基于(静态)信念网络的现有解决方案相比,对所提出的方法的优点带来了洞察的洞察力,以及最大可能性(或经验风险最小化)。
translated by 谷歌翻译
Spiking neural networks (SNN) are a viable alternative to conventional artificial neural networks when energy efficiency and computational complexity are of importance. A major advantage of SNNs is their binary information transfer through spike trains. The training of SNN has, however, been a challenge, since neuron models are non-differentiable and traditional gradient-based backpropagation algorithms cannot be applied directly. Furthermore, spike-timing-dependent plasticity (STDP), albeit being a spike-based learning rule, updates weights locally and does not optimize for the output error of the network. We present desire backpropagation, a method to derive the desired spike activity of neurons from the output error. The loss function can then be evaluated locally for every neuron. Incorporating the desire values into the STDP weight update leads to global error minimization and increasing classification accuracy. At the same time, the neuron dynamics and computational efficiency of STDP are maintained, making it a spike-based supervised learning rule. We trained three-layer networks to classify MNIST and Fashion-MNIST images and reached an accuracy of 98.41% and 87.56%, respectively. Furthermore, we show that desire backpropagation is computationally less complex than backpropagation in traditional neural networks.
translated by 谷歌翻译
图形卷积网络(GCN)由于学习图信息的显着表示能力而实现了令人印象深刻的性能。但是,GCN在深网上实施时需要昂贵的计算功率,因此很难将其部署在电池供电的设备上。相比之下,执行生物保真推理过程的尖峰神经网络(SNN)提供了节能的神经结构。在这项工作中,我们提出了SpikingGCN,这是一个端到端框架,旨在将GCN的嵌入与SNN的生物层性特征相结合。原始图数据根据图形卷积的合并编码为尖峰列车。我们通过利用与神经元节点结合的完全连接的层来进一步对生物信息处理进行建模。在各种场景(例如引用网络,图像图分类和推荐系统)中,我们的实验结果表明,该方法可以针对最新方法获得竞争性能。此外,我们表明,在神经形态芯片上的SpikingGCN可以将能源效率的明显优势带入图形数据分析中,这表明了其构建环境友好的机器学习模型的巨大潜力。
translated by 谷歌翻译
一个著名的矢量定量变分自动编码器(VQ-VAE)的问题是,学识渊博的离散表示形式仅使用代码书的全部容量的一小部分,也称为代码书崩溃。我们假设VQ-VAE的培训计划涉及一些精心设计的启发式方法,这是这个问题的基础。在本文中,我们提出了一种新的训练方案,该方案通过新颖的随机去量化和量化扩展标准VAE,称为随机量化变异自动编码器(SQ-VAE)。在SQ-VAE中,我们观察到一种趋势,即在训练的初始阶段进行量化是随机的,但逐渐收敛于确定性量化,我们称之为自宣传。我们的实验表明,SQ-VAE在不使用常见启发式方法的情况下改善了代码书的利用率。此外,我们从经验上表明,在视觉和语音相关的任务中,SQ-VAE优于VAE和VQ-VAE。
translated by 谷歌翻译
尖峰神经网络(SNN)在各种智能场景中都表现出了出色的功能。大多数现有的训练SNN方法基于突触可塑性的概念。但是,在现实的大脑中学习还利用了神经元的内在非突触机制。生物神经元的尖峰阈值是一种关键的固有神经元特征,在毫秒的时间尺度上表现出丰富的动力学,并已被认为是一种促进神经信息处理的基本机制。在这项研究中,我们开发了一种新型的协同学习方法,该方法同时训练SNN中的突触权重和尖峰阈值。经过突触阈值协同学习(STL-SNN)训练的SNN在各种静态和神经形态数据集上的精度明显高于接受两种突触学习(SL)和阈值学习(TL)的单独学习模型(TL)的SNN。在训练过程中,协同学习方法优化了神经阈值,通过适当的触发速率为网络提供稳定的信号传输。进一步的分析表明,STL-SNN对嘈杂的数据是可靠的,并且对深网结构表现出低的能耗。此外,通过引入广义联合决策框架(JDF),可以进一步提高STL-SNN的性能。总体而言,我们的发现表明,突触和内在的非突触机制之间的生物学上合理的协同作用可能为开发高效的SNN学习方法提供了一种有希望的方法。
translated by 谷歌翻译
Sparse representation has attracted great attention because it can greatly save storage re- sources and find representative features of data in a low-dimensional space. As a result, it may be widely applied in engineering domains including feature extraction, compressed sensing, signal denoising, picture clustering, and dictionary learning, just to name a few. In this paper, we propose a spiking sampling network. This network is composed of spiking neurons, and it can dynamically decide which pixel points should be retained and which ones need to be masked according to the input. Our experiments demonstrate that this approach enables better sparse representation of the original image and facilitates image reconstruction compared to random sampling. We thus use this approach for compressing massive data from the dynamic vision sensor, which greatly reduces the storage requirements for event data.
translated by 谷歌翻译
vae或变异自动编码器将数据压缩为潜在属性,并生成不同品种的新数据。基于KL差异的VAE被认为是数据增强的有效技术。在本文中,我们提出使用Wasserstein距离作为潜在属性的分布相似性的量度,并显示其优质的理论下限(ELBO)与在轻度条件下的KL差异相比。使用多个实验,我们证明了新的损失函数具有更好的收敛属性,并生成可以更好地帮助图像分类任务的人工图像。
translated by 谷歌翻译
由于具有高生物学合理性和低能消耗在神经形态硬件上的特性,因此尖峰神经网络(SNN)非常重要。作为获得深SNN的有效方法,转化方法在各种大型数据集上表现出高性能。但是,它通常遭受严重的性能降解和高时间延迟。特别是,以前的大多数工作都集中在简单的分类任务上,同时忽略了与ANN输出的精确近似。在本文中,我们首先从理论上分析转换误差,并得出时间变化极端对突触电流的有害影响。我们提出尖峰校准(Spicalib),以消除离散尖峰对输出分布的损坏,并修改脂肪,以使任意最大化层无损地转换。此外,提出了针对最佳标准化参数的贝叶斯优化,以避免经验设置。实验结果证明了分类,对象检测和分割任务的最新性能。据我们所知,这是第一次获得与ANN同时在这些任务上相当的SNN。此外,我们只需要先前在检测任务上工作的1/50推理时间,并且可以在0.492 $ \ times $ $下在分段任务上实现相同的性能。
translated by 谷歌翻译