图形卷积网络(GCN)由于学习图信息的显着表示能力而实现了令人印象深刻的性能。但是,GCN在深网上实施时需要昂贵的计算功率,因此很难将其部署在电池供电的设备上。相比之下,执行生物保真推理过程的尖峰神经网络(SNN)提供了节能的神经结构。在这项工作中,我们提出了SpikingGCN,这是一个端到端框架,旨在将GCN的嵌入与SNN的生物层性特征相结合。原始图数据根据图形卷积的合并编码为尖峰列车。我们通过利用与神经元节点结合的完全连接的层来进一步对生物信息处理进行建模。在各种场景(例如引用网络,图像图分类和推荐系统)中,我们的实验结果表明,该方法可以针对最新方法获得竞争性能。此外,我们表明,在神经形态芯片上的SpikingGCN可以将能源效率的明显优势带入图形数据分析中,这表明了其构建环境友好的机器学习模型的巨大潜力。
translated by 谷歌翻译
Tactile sensing is essential for a variety of daily tasks. And recent advances in event-driven tactile sensors and Spiking Neural Networks (SNNs) spur the research in related fields. However, SNN-enabled event-driven tactile learning is still in its infancy due to the limited representation abilities of existing spiking neurons and high spatio-temporal complexity in the event-driven tactile data. In this paper, to improve the representation capability of existing spiking neurons, we propose a novel neuron model called "location spiking neuron", which enables us to extract features of event-based data in a novel way. Specifically, based on the classical Time Spike Response Model (TSRM), we develop the Location Spike Response Model (LSRM). In addition, based on the most commonly-used Time Leaky Integrate-and-Fire (TLIF) model, we develop the Location Leaky Integrate-and-Fire (LLIF) model. Moreover, to demonstrate the representation effectiveness of our proposed neurons and capture the complex spatio-temporal dependencies in the event-driven tactile data, we exploit the location spiking neurons to propose two hybrid models for event-driven tactile learning. Specifically, the first hybrid model combines a fully-connected SNN with TSRM neurons and a fully-connected SNN with LSRM neurons. And the second hybrid model fuses the spatial spiking graph neural network with TLIF neurons and the temporal spiking graph neural network with LLIF neurons. Extensive experiments demonstrate the significant improvements of our models over the state-of-the-art methods on event-driven tactile learning. Moreover, compared to the counterpart artificial neural networks (ANNs), our SNN models are 10x to 100x energy-efficient, which shows the superior energy efficiency of our models and may bring new opportunities to the spike-based learning community and neuromorphic engineering.
translated by 谷歌翻译
从大脑的事件驱动和稀疏的尖峰特征中受益,尖峰神经网络(SNN)已成为人工神经网络(ANN)的一种节能替代品。但是,SNNS和ANN之间的性能差距很长一段时间以来一直在延伸SNNS。为了利用SNN的全部潜力,我们研究了SNN中注意机制的影响。我们首先使用插件套件提出了我们的注意力,称为多维关注(MA)。然后,提出了一种新的注意力SNN体系结构,并提出了端到端训练,称为“ ma-snn”,该体系结构分别或同时或同时延伸了沿时间,通道以及空间维度的注意力重量。基于现有的神经科学理论,我们利用注意力重量来优化膜电位,进而以数据依赖性方式调节尖峰响应。 MA以可忽略的其他参数为代价,促进了香草SNN,以实现更稀疏的尖峰活动,更好的性能和能源效率。实验是在基于事件的DVS128手势/步态动作识别和Imagenet-1K图像分类中进行的。在手势/步态上,尖峰计数减少了84.9%/81.6%,任务准确性和能源效率提高了5.9%/4.7%和3.4 $ \ times $/3.2 $ \ times $。在ImagEnet-1K上,我们在单个/4步res-SNN-104上获得了75.92%和77.08%的TOP-1精度,这是SNN的最新结果。据我们所知,这是SNN社区与大规模数据集中的ANN相比,SNN社区取得了可比甚至更好的性能。我们的工作阐明了SNN作为支持SNN的各种应用程序的一般骨干的潜力,在有效性和效率之间取得了巨大平衡。
translated by 谷歌翻译
我们提出了Memprop,即采用基于梯度的学习来培训完全的申请尖峰神经网络(MSNNS)。我们的方法利用固有的设备动力学来触发自然产生的电压尖峰。这些由回忆动力学发出的尖峰本质上是类似物,因此完全可区分,这消除了尖峰神经网络(SNN)文献中普遍存在的替代梯度方法的需求。回忆性神经网络通常将备忘录集成为映射离线培训网络的突触,或者以其他方式依靠关联学习机制来训练候选神经元的网络。相反,我们直接在循环神经元和突触的模拟香料模型上应用了通过时间(BPTT)训练算法的反向传播。我们的实现是完全的综合性,因为突触重量和尖峰神经元都集成在电阻RAM(RRAM)阵列上,而无需其他电路来实现尖峰动态,例如模数转换器(ADCS)或阈值比较器。结果,高阶电物理效应被充分利用,以在运行时使用磁性神经元的状态驱动动力学。通过朝着非同一梯度的学习迈进,我们在以前报道的几个基准上的轻巧密集的完全MSNN中获得了高度竞争的准确性。
translated by 谷歌翻译
Spiking neural networks (SNN) are a viable alternative to conventional artificial neural networks when energy efficiency and computational complexity are of importance. A major advantage of SNNs is their binary information transfer through spike trains. The training of SNN has, however, been a challenge, since neuron models are non-differentiable and traditional gradient-based backpropagation algorithms cannot be applied directly. Furthermore, spike-timing-dependent plasticity (STDP), albeit being a spike-based learning rule, updates weights locally and does not optimize for the output error of the network. We present desire backpropagation, a method to derive the desired spike activity of neurons from the output error. The loss function can then be evaluated locally for every neuron. Incorporating the desire values into the STDP weight update leads to global error minimization and increasing classification accuracy. At the same time, the neuron dynamics and computational efficiency of STDP are maintained, making it a spike-based supervised learning rule. We trained three-layer networks to classify MNIST and Fashion-MNIST images and reached an accuracy of 98.41% and 87.56%, respectively. Furthermore, we show that desire backpropagation is computationally less complex than backpropagation in traditional neural networks.
translated by 谷歌翻译
由于它们的时间加工能力及其低交换(尺寸,重量和功率)以及神经形态硬件中的节能实现,尖峰神经网络(SNNS)已成为传统人工神经网络(ANN)的有趣替代方案。然而,培训SNNS所涉及的挑战在准确性方面有限制了它们的表现,从而限制了他们的应用。因此,改善更准确的特征提取的学习算法和神经架构是SNN研究中的当前优先级之一。在本文中,我们展示了现代尖峰架构的关键组成部分的研究。我们在从最佳执行网络中凭经验比较了图像分类数据集中的不同技术。我们设计了成功的残余网络(Reset)架构的尖峰版本,并测试了不同的组件和培训策略。我们的结果提供了SNN设计的最新版本,它允许在尝试构建最佳视觉特征提取器时进行明智的选择。最后,我们的网络优于CIFAR-10(94.1%)和CIFAR-100(74.5%)数据集的先前SNN架构,并将现有技术与DVS-CIFAR10(71.3%)相匹配,参数较少而不是先前的状态艺术,无需安静转换。代码在https://github.com/vicenteax/spiking_resnet上获得。
translated by 谷歌翻译
Event-based simulations of Spiking Neural Networks (SNNs) are fast and accurate. However, they are rarely used in the context of event-based gradient descent because their implementations on GPUs are difficult. Discretization with the forward Euler method is instead often used with gradient descent techniques but has the disadvantage of being computationally expensive. Moreover, the lack of precision of discretized simulations can create mismatches between the simulated models and analog neuromorphic hardware. In this work, we propose a new exact error-backpropagation through spikes method for SNNs, extending Fast \& Deep to multiple spikes per neuron. We show that our method can be efficiently implemented on GPUs in a fully event-based manner, making it fast to compute and precise enough for analog neuromorphic hardware. Compared to the original Fast \& Deep and the current state-of-the-art event-based gradient-descent algorithms, we demonstrate increased performance on several benchmark datasets with both feedforward and convolutional SNNs. In particular, we show that multi-spike SNNs can have advantages over single-spike networks in terms of convergence, sparsity, classification latency and sensitivity to the dead neuron problem.
translated by 谷歌翻译
由于它们的低能量消耗,对神经形态计算设备上的尖刺神经网络(SNNS)越来越兴趣。最近的进展使培训SNNS在精度方面开始与传统人工神经网络(ANNS)进行竞争,同时在神经胸壁上运行时的节能。然而,培训SNNS的过程仍然基于最初为ANNS开发的密集的张量操作,这不利用SNN的时空稀疏性质。我们在这里介绍第一稀疏SNN BackPropagation算法,该算法与最新的现有技术实现相同或更好的准确性,同时显着更快,更高的记忆力。我们展示了我们对不同复杂性(时尚 - MNIST,神经影像学 - MNIST和Spiking Heidelberg数字的真实数据集的有效性,在不失精度的情况下实现了高达150倍的后向通行证的加速,而不会减少精度。
translated by 谷歌翻译
The term ``neuromorphic'' refers to systems that are closely resembling the architecture and/or the dynamics of biological neural networks. Typical examples are novel computer chips designed to mimic the architecture of a biological brain, or sensors that get inspiration from, e.g., the visual or olfactory systems in insects and mammals to acquire information about the environment. This approach is not without ambition as it promises to enable engineered devices able to reproduce the level of performance observed in biological organisms -- the main immediate advantage being the efficient use of scarce resources, which translates into low power requirements. The emphasis on low power and energy efficiency of neuromorphic devices is a perfect match for space applications. Spacecraft -- especially miniaturized ones -- have strict energy constraints as they need to operate in an environment which is scarce with resources and extremely hostile. In this work we present an overview of early attempts made to study a neuromorphic approach in a space context at the European Space Agency's (ESA) Advanced Concepts Team (ACT).
translated by 谷歌翻译
由于稀疏,异步和二进制事件(或尖峰)驱动加工,尖峰神经网络(SNNS)最近成为深度学习的替代方案,可以在神经形状硬件上产生巨大的能效益。然而,从划痕训练高精度和低潜伏期的SNN,患有尖刺神经元的非微弱性质。要在SNNS中解决此培训问题,我们重新批准批量标准化,并通过时间(BNTT)技术提出时间批量标准化。大多数先前的SNN工程到现在忽略了批量标准化,认为它无效地训练时间SNN。与以前的作品不同,我们提出的BNTT沿着时轴沿着时间轴解耦的参数,以捕获尖峰的时间动态。在BNTT中的时间上不断发展的可学习参数允许神经元通过不同的时间步长来控制其尖峰率,从头开始实现低延迟和低能量训练。我们对CiFar-10,CiFar-100,微小想象特和事件驱动的DVS-CIFAR10数据集进行实验。 BNTT允许我们首次在三个复杂的数据集中培训深度SNN架构,只需25-30步即可。我们还使用BNTT中的参数分布提前退出算法,以降低推断的延迟,进一步提高了能量效率。
translated by 谷歌翻译
尖峰神经网络(SNNS)是一种实用方法,可以通过模拟神经元对时间信息的杠杆作用来进行更高的数据有效学习。在本文中,我们提出了时间通道联合注意(TCJA)架构单元,这是一种有效的SNN技术,依赖于注意机制,通过有效地沿空间和时间维度沿着尖峰序列的相关性来实现。我们的基本技术贡献在于:1)通过采用挤压操作,将尖峰流压缩为平均矩阵,然后使用具有高效1-D卷积的两种局部注意机制来建立时间和渠道关系,以在频道和渠道关系中进行特征提取灵活的时尚。 2)利用交叉卷积融合(CCF)层在时间范围和通道范围之间建模相互依赖性,从而破坏了两个维度的独立性,并实现了特征之间的相互作用。通过共同探索和重新启用数据流,我们的方法在所有测试的主流静态和神经形态数据集上,在包括时尚量的所有测试的主流静态数据集上,最高可先进的(SOTA)高达15.7% ,CIFAR10-DVS,N-Caltech 101和DVS128手势。
translated by 谷歌翻译
尽管神经形态计算的快速进展,但尖刺神经网络(SNNS)的能力不足和不足的表现力严重限制了其在实践中的应用范围。剩余学习和捷径被证明是培训深层神经网络的重要方法,但以前的工作评估了他们对基于尖峰的通信和时空动力学的特征的适用性。在本文中,我们首先确定这种疏忽导致受阻信息流程和伴随以前的残留SNN中的降解问题。然后,我们提出了一种新型的SNN定向的残余块MS-Reset,能够显着地扩展直接训练的SNN的深度,例如,在ImageNet上最多可在CiFar-10和104层上完成482层,而不会观察到任何轻微的降级问题。我们验证了基于帧和神经形态数据集的MS-Reset的有效性,并且MS-Resnet104在直接训练的SNN的域中的第一次实现了在ImageNet上的76.02%精度的优越结果。还观察到巨大的能量效率,平均仅需要每根神经元的一穗来分类输入样本。我们相信我们强大且可扩展的型号将为进一步探索SNN提供强大的支持。
translated by 谷歌翻译
穗状花序的神经形状硬件占据了深度神经网络(DNN)的更节能实现的承诺,而不是GPU的标准硬件。但这需要了解如何在基于事件的稀疏触发制度中仿真DNN,否则能量优势丢失。特别地,解决序列处理任务的DNN通常采用难以使用少量尖峰效仿的长短期存储器(LSTM)单元。我们展示了许多生物神经元的面部,在每个尖峰后缓慢的超积极性(AHP)电流,提供了有效的解决方案。 AHP电流可以轻松地在支持多舱神经元模型的神经形状硬件中实现,例如英特尔的Loihi芯片。滤波近似理论解释为什么AHP-Neurons可以模拟LSTM单元的功能。这产生了高度节能的时间序列分类方法。此外,它为实现了非常稀疏的大量大型DNN来实现基础,这些大型DNN在文本中提取单词和句子之间的关系,以便回答有关文本的问题。
translated by 谷歌翻译
尖峰神经网络(SNNS)是脑激发的模型,可在神经形状硬件上实现节能实现。然而,由于尖刺神经元模型的不连续性,SNN的监督培训仍然是一个难题。大多数现有方法模仿人工神经网络的BackProjagation框架和前馈架构,并在尖峰时间使用代理衍生物或计算梯度来处理问题。这些方法累积近似误差,或者仅通过现有尖峰被限制地传播信息,并且通常需要沿着具有大的内存成本和生物言行的时间步长的信息传播。在这项工作中,我们考虑反馈尖刺神经网络,这些神经网络更为大脑,并提出了一种新的训练方法,不依赖于前向计算的确切反向。首先,我们表明,具有反馈连接的SNN的平均触发速率将沿着时间的时间逐渐发展到均衡状态,这沿着定点方程沿着时间延续。然后通过将反馈SNN的前向计算作为这种等式的黑匣子求解器,并利用了方程上的隐式差异,我们可以计算参数的梯度而不考虑确切的前向过程。以这种方式,向前和向后程序被解耦,因此避免了不可微分的尖峰功能的问题。我们还简要介绍了隐含分化的生物合理性,这只需要计算另一个平衡。在Mnist,Fashion-Mnist,N-Mnist,CiFar-10和CiFar-100上进行了广泛的实验,证明了我们在少量时间步骤中具有较少神经元和参数的反馈模型的方法的优越性。我们的代码是在https://github.com/pkuxmq/ide-fsnn中获得的。
translated by 谷歌翻译
Deep learning has revolutionized many machine learning tasks in recent years, ranging from image classification and video processing to speech recognition and natural language understanding. The data in these tasks are typically represented in the Euclidean space. However, there is an increasing number of applications where data are generated from non-Euclidean domains and are represented as graphs with complex relationships and interdependency between objects. The complexity of graph data has imposed significant challenges on existing machine learning algorithms. Recently, many studies on extending deep learning approaches for graph data have emerged. In this survey, we provide a comprehensive overview of graph neural networks (GNNs) in data mining and machine learning fields. We propose a new taxonomy to divide the state-of-the-art graph neural networks into four categories, namely recurrent graph neural networks, convolutional graph neural networks, graph autoencoders, and spatial-temporal graph neural networks. We further discuss the applications of graph neural networks across various domains and summarize the open source codes, benchmark data sets, and model evaluation of graph neural networks. Finally, we propose potential research directions in this rapidly growing field.
translated by 谷歌翻译
尖峰神经网络(SNN)在各种智能场景中都表现出了出色的功能。大多数现有的训练SNN方法基于突触可塑性的概念。但是,在现实的大脑中学习还利用了神经元的内在非突触机制。生物神经元的尖峰阈值是一种关键的固有神经元特征,在毫秒的时间尺度上表现出丰富的动力学,并已被认为是一种促进神经信息处理的基本机制。在这项研究中,我们开发了一种新型的协同学习方法,该方法同时训练SNN中的突触权重和尖峰阈值。经过突触阈值协同学习(STL-SNN)训练的SNN在各种静态和神经形态数据集上的精度明显高于接受两种突触学习(SL)和阈值学习(TL)的单独学习模型(TL)的SNN。在训练过程中,协同学习方法优化了神经阈值,通过适当的触发速率为网络提供稳定的信号传输。进一步的分析表明,STL-SNN对嘈杂的数据是可靠的,并且对深网结构表现出低的能耗。此外,通过引入广义联合决策框架(JDF),可以进一步提高STL-SNN的性能。总体而言,我们的发现表明,突触和内在的非突触机制之间的生物学上合理的协同作用可能为开发高效的SNN学习方法提供了一种有希望的方法。
translated by 谷歌翻译
为了在专门的神经形态硬件中进行节能计算,我们提出了尖峰神经编码,这是基于预测性编码理论的人工神经模型家族的实例化。该模型是同类模型,它是通过在“猜测和检查”的永无止境过程中运行的,神经元可以预测彼此的活动值,然后调整自己的活动以做出更好的未来预测。我们系统的互动性,迭代性质非常适合感官流预测的连续时间表述,并且如我们所示,模型的结构产生了局部突触更新规则,可以用来补充或作为在线峰值定位的替代方案依赖的可塑性。在本文中,我们对模型的实例化进行了实例化,该模型包括泄漏的集成和火灾单元。但是,我们系统所在的框架自然可以结合更复杂的神经元,例如Hodgkin-Huxley模型。我们在模式识别方面的实验结果证明了当二进制尖峰列车是通信间通信的主要范式时,模型的潜力。值得注意的是,尖峰神经编码在分类绩效方面具有竞争力,并且在从任务序列中学习时会降低遗忘,从而提供了更经济的,具有生物学上的替代品,可用于流行的人工神经网络。
translated by 谷歌翻译
Spiking Neural networks (SNN) have emerged as an attractive spatio-temporal computing paradigm for a wide range of low-power vision tasks. However, state-of-the-art (SOTA) SNN models either incur multiple time steps which hinder their deployment in real-time use cases or increase the training complexity significantly. To mitigate this concern, we present a training framework (from scratch) for one-time-step SNNs that uses a novel variant of the recently proposed Hoyer regularizer. We estimate the threshold of each SNN layer as the Hoyer extremum of a clipped version of its activation map, where the clipping threshold is trained using gradient descent with our Hoyer regularizer. This approach not only downscales the value of the trainable threshold, thereby emitting a large number of spikes for weight update with a limited number of iterations (due to only one time step) but also shifts the membrane potential values away from the threshold, thereby mitigating the effect of noise that can degrade the SNN accuracy. Our approach outperforms existing spiking, binary, and adder neural networks in terms of the accuracy-FLOPs trade-off for complex image recognition tasks. Downstream experiments on object detection also demonstrate the efficacy of our approach.
translated by 谷歌翻译
尖峰神经网络(SNN)引起了脑启发的人工智能和计算神经科学的广泛关注。它们可用于在多个尺度上模拟大脑中的生物信息处理。更重要的是,SNN是适当的抽象水平,可以将大脑和认知的灵感带入人工智能。在本文中,我们介绍了脑启发的认知智力引擎(Braincog),用于创建脑启发的AI和脑模拟模型。 Braincog将不同类型的尖峰神经元模型,学习规则,大脑区域等作为平台提供的重要模块。基于这些易于使用的模块,BrainCog支持各种受脑启发的认知功能,包括感知和学习,决策,知识表示和推理,运动控制和社会认知。这些受脑启发的AI模型已在各种受监督,无监督和强化学习任务上有效验证,并且可以用来使AI模型具有多种受脑启发的认知功能。为了进行大脑模拟,Braincog实现了决策,工作记忆,神经回路的结构模拟以及小鼠大脑,猕猴大脑和人脑的整个大脑结构模拟的功能模拟。一个名为BORN的AI引擎是基于Braincog开发的,它演示了如何将Braincog的组件集成并用于构建AI模型和应用。为了使科学追求解码生物智能的性质并创建AI,Braincog旨在提供必要且易于使用的构件,并提供基础设施支持,以开发基于脑部的尖峰神经网络AI,并模拟认知大脑在多个尺度上。可以在https://github.com/braincog-x上找到Braincog的在线存储库。
translated by 谷歌翻译
Spiking Neural Networks (SNNs) are bio-plausible models that hold great potential for realizing energy-efficient implementations of sequential tasks on resource-constrained edge devices. However, commercial edge platforms based on standard GPUs are not optimized to deploy SNNs, resulting in high energy and latency. While analog In-Memory Computing (IMC) platforms can serve as energy-efficient inference engines, they are accursed by the immense energy, latency, and area requirements of high-precision ADCs (HP-ADC), overshadowing the benefits of in-memory computations. We propose a hardware/software co-design methodology to deploy SNNs into an ADC-Less IMC architecture using sense-amplifiers as 1-bit ADCs replacing conventional HP-ADCs and alleviating the above issues. Our proposed framework incurs minimal accuracy degradation by performing hardware-aware training and is able to scale beyond simple image classification tasks to more complex sequential regression tasks. Experiments on complex tasks of optical flow estimation and gesture recognition show that progressively increasing the hardware awareness during SNN training allows the model to adapt and learn the errors due to the non-idealities associated with ADC-Less IMC. Also, the proposed ADC-Less IMC offers significant energy and latency improvements, $2-7\times$ and $8.9-24.6\times$, respectively, depending on the SNN model and the workload, compared to HP-ADC IMC.
translated by 谷歌翻译