由于具有高生物学合理性和低能消耗在神经形态硬件上的特性,因此尖峰神经网络(SNN)非常重要。作为获得深SNN的有效方法,转化方法在各种大型数据集上表现出高性能。但是,它通常遭受严重的性能降解和高时间延迟。特别是,以前的大多数工作都集中在简单的分类任务上,同时忽略了与ANN输出的精确近似。在本文中,我们首先从理论上分析转换误差,并得出时间变化极端对突触电流的有害影响。我们提出尖峰校准(Spicalib),以消除离散尖峰对输出分布的损坏,并修改脂肪,以使任意最大化层无损地转换。此外,提出了针对最佳标准化参数的贝叶斯优化,以避免经验设置。实验结果证明了分类,对象检测和分割任务的最新性能。据我们所知,这是第一次获得与ANN同时在这些任务上相当的SNN。此外,我们只需要先前在检测任务上工作的1/50推理时间,并且可以在0.492 $ \ times $ $下在分段任务上实现相同的性能。
translated by 谷歌翻译
尖峰神经网络是低功率环境的有效计算模型。基于SPIKE的BP算法和ANN-TO-SNN(ANN2SNN)转换是SNN培训的成功技术。然而,尖峰碱BP训练速度很慢,需要大量的记忆成本。尽管Ann2NN提供了一种培训SNN的低成本方式,但它需要许多推理步骤才能模仿训练有素的ANN以表现良好。在本文中,我们提出了一个snn-to-ang(SNN2ANN)框架,以快速和记忆的方式训练SNN。 SNN2ANN由2个组成部分组成:a)ANN和SNN和B)尖峰映射单元之间的重量共享体系结构。首先,该体系结构在ANN分支上训练重量共享参数,从而快速训练和SNN的记忆成本较低。其次,尖峰映射单元确保ANN的激活值是尖峰特征。结果,可以通过训练ANN分支来优化SNN的分类误差。此外,我们设计了一种自适应阈值调整(ATA)算法来解决嘈杂的尖峰问题。实验结果表明,我们的基于SNN2ANN的模型在基准数据集(CIFAR10,CIFAR100和TININE-IMAGENET)上表现良好。此外,SNN2ANN可以在0.625倍的时间步长,0.377倍训练时间,0.27倍GPU内存成本以及基于SPIKE的BP模型的0.33倍尖峰活动下实现可比精度。
translated by 谷歌翻译
由于稀疏,异步和二进制事件(或尖峰)驱动加工,尖峰神经网络(SNNS)最近成为深度学习的替代方案,可以在神经形状硬件上产生巨大的能效益。然而,从划痕训练高精度和低潜伏期的SNN,患有尖刺神经元的非微弱性质。要在SNNS中解决此培训问题,我们重新批准批量标准化,并通过时间(BNTT)技术提出时间批量标准化。大多数先前的SNN工程到现在忽略了批量标准化,认为它无效地训练时间SNN。与以前的作品不同,我们提出的BNTT沿着时轴沿着时间轴解耦的参数,以捕获尖峰的时间动态。在BNTT中的时间上不断发展的可学习参数允许神经元通过不同的时间步长来控制其尖峰率,从头开始实现低延迟和低能量训练。我们对CiFar-10,CiFar-100,微小想象特和事件驱动的DVS-CIFAR10数据集进行实验。 BNTT允许我们首次在三个复杂的数据集中培训深度SNN架构,只需25-30步即可。我们还使用BNTT中的参数分布提前退出算法,以降低推断的延迟,进一步提高了能量效率。
translated by 谷歌翻译
由于其异步,稀疏和二进制信息处理,尖峰神经网络(SNN)最近成为人工神经网络(ANN)的低功耗替代品。为了提高能源效率和吞吐量,可以在使用新兴的非挥发性(NVM)设备在模拟域中实现多重和蓄积(MAC)操作的回忆横梁上实现SNN。尽管SNN与回忆性横梁具有兼容性,但很少关注固有的横杆非理想性和随机性对SNN的性能的影响。在本文中,我们对SNN在非理想横杆上的鲁棒性进行了全面分析。我们检查通过学习算法训练的SNN,例如,替代梯度和ANN-SNN转换。我们的结果表明,跨多个时间阶段的重复横梁计算会导致错误积累,从而导致SNN推断期间的性能下降。我们进一步表明,经过较少时间步长培训的SNN在部署在磁带横梁上时可以更好地准确。
translated by 谷歌翻译
Spiking neural networks (SNNs) are receiving increasing attention due to their low power consumption and strong bio-plausibility. Optimization of SNNs is a challenging task. Two main methods, artificial neural network (ANN)-to-SNN conversion and spike-based backpropagation (BP), both have their advantages and limitations. For ANN-to-SNN conversion, it requires a long inference time to approximate the accuracy of ANN, thus diminishing the benefits of SNN. With spike-based BP, training high-precision SNNs typically consumes dozens of times more computational resources and time than their ANN counterparts. In this paper, we propose a novel SNN training approach that combines the benefits of the two methods. We first train a single-step SNN by approximating the neural potential distribution with random noise, then convert the single-step SNN to a multi-step SNN losslessly. The introduction of Gaussian distributed noise leads to a significant gain in accuracy after conversion. The results show that our method considerably reduces the training and inference times of SNNs while maintaining their high accuracy. Compared to the previous two methods, ours can reduce training time by 65%-75% and achieves more than 100 times faster inference speed. We also argue that the neuron model augmented with noise makes it more bio-plausible.
translated by 谷歌翻译
尽管神经形态计算的快速进展,但尖刺神经网络(SNNS)的能力不足和不足的表现力严重限制了其在实践中的应用范围。剩余学习和捷径被证明是培训深层神经网络的重要方法,但以前的工作评估了他们对基于尖峰的通信和时空动力学的特征的适用性。在本文中,我们首先确定这种疏忽导致受阻信息流程和伴随以前的残留SNN中的降解问题。然后,我们提出了一种新型的SNN定向的残余块MS-Reset,能够显着地扩展直接训练的SNN的深度,例如,在ImageNet上最多可在CiFar-10和104层上完成482层,而不会观察到任何轻微的降级问题。我们验证了基于帧和神经形态数据集的MS-Reset的有效性,并且MS-Resnet104在直接训练的SNN的域中的第一次实现了在ImageNet上的76.02%精度的优越结果。还观察到巨大的能量效率,平均仅需要每根神经元的一穗来分类输入样本。我们相信我们强大且可扩展的型号将为进一步探索SNN提供强大的支持。
translated by 谷歌翻译
我们提出了一种新的学习算法,使用传统的人工神经网络(ANN)作为代理训练尖刺神经网络(SNN)。我们分别与具有相同网络架构和共享突触权重的集成和火(IF)和Relu神经元进行两次SNN和ANN网络。两个网络的前进通过完全独立。通过假设具有速率编码的神经元作为Relu的近似值,我们将SNN中的SNN的误差进行了回复,以更新共享权重,只需用SNN的ANN最终输出替换ANN最终输出。我们将建议的代理学习应用于深度卷积的SNNS,并在Fahion-Mnist和CiFar10的两个基准数据集上进行评估,分别为94.56%和93.11%的分类准确性。所提出的网络可以优于培训的其他深鼻涕,训练,替代学习,代理梯度学习,或从深处转换。转换的SNNS需要长时间的仿真时间来达到合理的准确性,而我们的代理学习导致高效的SNN,模拟时间较短。
translated by 谷歌翻译
深度尖峰神经网络(SNNS)目前由于离散二进制激活和复杂的空间 - 时间动态而导致的基于梯度的方法的优化困难。考虑到Reset的巨大成功在深度学习中,将深入了解剩余学习,这将是自然的。以前的尖峰Reset模仿ANN的标准残留块,并简单地用尖刺神经元取代relu激活层,这遭受了劣化问题,并且很难实施剩余学习。在本文中,我们提出了尖峰元素 - 明智(SEW)RESET,以实现深部SNNS的剩余学习。我们证明SEW RESET可以轻松实现身份映射并克服Spiking Reset的消失/爆炸梯度问题。我们在Imagenet,DVS手势和CIFAR10-DVS数据集中评估我们的SEF RESET,并显示SEW RESNET以准确性和时间步长,最先进的直接训练的SNN。此外,SEW Reset通过简单地添加更多层来实现更高的性能,提供一种培训深舒头的简单方法。为了我们的最佳知识,这是第一次直接训练具有100多层以上的深度SNN。我们的代码可在https://github.com/fangwei123456/spike-element-wore-resnet上获得。
translated by 谷歌翻译
尖峰 - 神经网络(SNNS)在边缘设备处具有前景,因为与模拟 - 神经网络(ANN)相比,SNN的事件驱动操作提供了显着较低的功率。虽然很难有效地训练SNN,但是已经开发了许多将培训的ANN转换为SNNS的技术。但是,在转换之后,SNN中的准确性和延迟之间存在权衡关系,在大尺寸数据集中导致诸如想象成的大尺寸数据集之间的相当大。我们提出了一种名为TCL的技术,以缓解权衡问题,使得73.87%(VGG-16)和70.37%(Reset-34)的准确性,在SNNS中的250个周期的中等潜伏期。
translated by 谷歌翻译
尖峰神经网络(SNN)是一种受脑启发的模型,具有更时空的信息处理能力和计算能效效率。但是,随着SNN深度的增加,由SNN​​的重量引起的记忆问题逐渐引起了人们的注意。受到人工神经网络(ANN)量化技术的启发,引入了二进制SNN(BSNN)来解决记忆问题。由于缺乏合适的学习算法,BSNN通常由ANN-SNN转换获得,其准确性将受到训练有素的ANN的限制。在本文中,我们提出了具有准确性损失估计器的超低潜伏期自适应局部二进制二进制尖峰神经网络(ALBSNN),该网络层动态选择要进行二进制的网络层,以通过评估由二进制重量引起的错误来确保网络的准确性在网络学习过程中。实验结果表明,此方法可以将存储空间降低超过20%,而不会丢失网络准确性。同时,为了加速网络的训练速度,引入了全球平均池(GAP)层,以通过卷积和合并的组合替换完全连接的层,以便SNN可以使用少量时间获得更好识别准确性的步骤。在仅使用一个时间步骤的极端情况下,我们仍然可以在三个不同的数据集(FashionMnist,CIFAR-10和CIFAR-10和CIFAR-100)上获得92.92%,91.63%和63.54%的测试精度。
translated by 谷歌翻译
脑启发的尖峰神经网络(SNN)已成功应用于许多模式识别域。基于SNN的深层结构在感知任务(例如图像分类,目标检测)中取得了可观的结果。但是,深SNN在加强学习(RL)任务中的应用仍然是一个问题。尽管以前有关于SNN和RL组合的研究,但其中大多数专注于浅网络的机器人控制问题,或使用ANN-SNN转换方法来实施Spiking Spiking Deep Q Network(SDQN)。在这项工作中,我们数学分析了SDQN中尖峰信号特征消失的问题,并提出了一种基于潜在的层归一化(PBLN)方法,以直接训练尖峰尖峰深度Q网络。实验表明,与最先进的ANN-SNN转换方法和其他SDQN作品相比,建议的PBLN Spiking Deep Q Networks(PL-SDQN)在Atari游戏任务上取得了更好的性能。
translated by 谷歌翻译
我们如何为神经系统带来隐私和能效?在本文中,我们提出了PrivateNN,旨在从预先训练的ANN模型构建低功耗尖峰神经网络(SNNS),而不会泄漏包含在数据集中的敏感信息。在这里,我们解决两种类型的泄漏问题:1)当网络在Ann-SNN转换过程中访问真实训练数据时,会导致数据泄漏。 2)当类相关的特征可以从网络参数重建时,会导致类泄漏。为了解决数据泄漏问题,我们从预先培训的ANN生成合成图像,并使用所生成的图像将ANN转换为SNNS。然而,转换的SNNS仍然容易受到类泄漏的影响,因为权重参数相对于ANN参数具有相同的(或缩放)值。因此,通过训练SNNS,通过训练基于时间尖峰的学习规则来加密SNN权重。使用时间数据更新权重参数使得SNN难以在空间域中解释。我们观察到,加密的私人没有消除数据和类泄漏问题,略微的性能下降(小于〜2),与标准ANN相比,与标准ANN相比的显着的能效增益(约55倍)。我们对各种数据集进行广泛的实验,包括CiFar10,CiFar100和Tinyimagenet,突出了隐私保留的SNN培训的重要性。
translated by 谷歌翻译
Spiking Neural Networks (SNNs) are bio-plausible models that hold great potential for realizing energy-efficient implementations of sequential tasks on resource-constrained edge devices. However, commercial edge platforms based on standard GPUs are not optimized to deploy SNNs, resulting in high energy and latency. While analog In-Memory Computing (IMC) platforms can serve as energy-efficient inference engines, they are accursed by the immense energy, latency, and area requirements of high-precision ADCs (HP-ADC), overshadowing the benefits of in-memory computations. We propose a hardware/software co-design methodology to deploy SNNs into an ADC-Less IMC architecture using sense-amplifiers as 1-bit ADCs replacing conventional HP-ADCs and alleviating the above issues. Our proposed framework incurs minimal accuracy degradation by performing hardware-aware training and is able to scale beyond simple image classification tasks to more complex sequential regression tasks. Experiments on complex tasks of optical flow estimation and gesture recognition show that progressively increasing the hardware awareness during SNN training allows the model to adapt and learn the errors due to the non-idealities associated with ADC-Less IMC. Also, the proposed ADC-Less IMC offers significant energy and latency improvements, $2-7\times$ and $8.9-24.6\times$, respectively, depending on the SNN model and the workload, compared to HP-ADC IMC.
translated by 谷歌翻译
In the past years, artificial neural networks (ANNs) have become the de-facto standard to solve tasks in communications engineering that are difficult to solve with traditional methods. In parallel, the artificial intelligence community drives its research to biology-inspired, brain-like spiking neural networks (SNNs), which promise extremely energy-efficient computing. In this paper, we investigate the use of SNNs in the context of channel equalization for ultra-low complexity receivers. We propose an SNN-based equalizer with a feedback structure akin to the decision feedback equalizer (DFE). For conversion of real-world data into spike signals we introduce a novel ternary encoding and compare it with traditional log-scale encoding. We show that our approach clearly outperforms conventional linear equalizers for three different exemplary channels. We highlight that mainly the conversion of the channel output to spikes introduces a small performance penalty. The proposed SNN with a decision feedback structure enables the path to competitive energy-efficient transceivers.
translated by 谷歌翻译
在本文中,我们提出了一种节能的SNN体系结构,该体系结构可以通过提高的精度无缝地运行深度尖峰神经网络(SNN)。首先,我们提出了一个转换意识培训(CAT),以减少无硬件实施开销而无需安排SNN转换损失。在拟议的CAT中,可以有效利用用于在ANN训练过程中模拟SNN的激活函数,以减少转换后的数据表示误差。基于CAT技术,我们还提出了一项首要尖峰编码,该编码可以通过使用SPIKE时间信息来轻巧计算。支持提出技术的SNN处理器设计已使用28nm CMOS流程实施。该处理器的推理能量分别为486.7UJ,503.6UJ和1426UJ的最高1级准确性,分别为91.7%,67.9%和57.4%,分别为CIFAR-10,CIFAR-100和TININE-IMIMAGENET处理。16具有5位对数权重。
translated by 谷歌翻译
Spiking Neural networks (SNN) have emerged as an attractive spatio-temporal computing paradigm for a wide range of low-power vision tasks. However, state-of-the-art (SOTA) SNN models either incur multiple time steps which hinder their deployment in real-time use cases or increase the training complexity significantly. To mitigate this concern, we present a training framework (from scratch) for one-time-step SNNs that uses a novel variant of the recently proposed Hoyer regularizer. We estimate the threshold of each SNN layer as the Hoyer extremum of a clipped version of its activation map, where the clipping threshold is trained using gradient descent with our Hoyer regularizer. This approach not only downscales the value of the trainable threshold, thereby emitting a large number of spikes for weight update with a limited number of iterations (due to only one time step) but also shifts the membrane potential values away from the threshold, thereby mitigating the effect of noise that can degrade the SNN accuracy. Our approach outperforms existing spiking, binary, and adder neural networks in terms of the accuracy-FLOPs trade-off for complex image recognition tasks. Downstream experiments on object detection also demonstrate the efficacy of our approach.
translated by 谷歌翻译
Deep spiking neural networks (SNNs) offer the promise of low-power artificial intelligence. However, training deep SNNs from scratch or converting deep artificial neural networks to SNNs without loss of performance has been a challenge. Here we propose an exact mapping from a network with Rectified Linear Units (ReLUs) to an SNN that fires exactly one spike per neuron. For our constructive proof, we assume that an arbitrary multi-layer ReLU network with or without convolutional layers, batch normalization and max pooling layers was trained to high performance on some training set. Furthermore, we assume that we have access to a representative example of input data used during training and to the exact parameters (weights and biases) of the trained ReLU network. The mapping from deep ReLU networks to SNNs causes zero percent drop in accuracy on CIFAR10, CIFAR100 and the ImageNet-like data sets Places365 and PASS. More generally our work shows that an arbitrary deep ReLU network can be replaced by an energy-efficient single-spike neural network without any loss of performance.
translated by 谷歌翻译
基于事件的视觉传感器在事件流中编码本地像素方面的亮度变化,而不是图像帧,并且除了低延迟,高动态范围和缺乏运动模糊之外,还产生稀疏,节能编码。基于事件的传感器的对象识别的最新进展来自深度神经网络的转换,培训背部经历。但是,使用这些事件流的方法需要转换到同步范式,这不仅失去了计算效率,而且还会错过提取时空特征的机会。在本文中,我们提出了一种用于基于事件的模式识别和对象检测的深度神经网络的端到端培训的混合架构,将尖刺神经网络(SNN)骨干组合用于高效的基于事件的特征提取,以及随后的模拟神经网络(ANN)头解决同步分类和检测任务。这是通过将标准的梯度训练与替代梯度训练相结合来实现这一点来实现,以通过SNN传播梯度。可以在不转换的情况下培训混合SNN-ANN,并且导致高度准确的网络,这些网络比其ANN对应物大得多。我们演示了基于事件的分类和对象检测数据集的结果,其中只需要将ANN头的体系结构适应任务,并且不需要基于事件的输入的转换。由于ANNS和SNNS需要不同的硬件范式来最大限度地提高其效率,因此设想SNN骨干网和ANN头可以在不同的处理单元上执行,从而分析在两部分之间进行通信的必要带宽。混合网络是有前途的架构,以进一步推进基于事件的愿景的机器学习方法,而不必妥协效率。
translated by 谷歌翻译
由于它们的时间加工能力及其低交换(尺寸,重量和功率)以及神经形态硬件中的节能实现,尖峰神经网络(SNNS)已成为传统人工神经网络(ANN)的有趣替代方案。然而,培训SNNS所涉及的挑战在准确性方面有限制了它们的表现,从而限制了他们的应用。因此,改善更准确的特征提取的学习算法和神经架构是SNN研究中的当前优先级之一。在本文中,我们展示了现代尖峰架构的关键组成部分的研究。我们在从最佳执行网络中凭经验比较了图像分类数据集中的不同技术。我们设计了成功的残余网络(Reset)架构的尖峰版本,并测试了不同的组件和培训策略。我们的结果提供了SNN设计的最新版本,它允许在尝试构建最佳视觉特征提取器时进行明智的选择。最后,我们的网络优于CIFAR-10(94.1%)和CIFAR-100(74.5%)数据集的先前SNN架构,并将现有技术与DVS-CIFAR10(71.3%)相匹配,参数较少而不是先前的状态艺术,无需安静转换。代码在https://github.com/vicenteax/spiking_resnet上获得。
translated by 谷歌翻译
由于降低了von-neumann架构运行深度学习模型的功耗的基本限制,在聚光灯下,基于低功率尖刺神经网络的神经栓塞系统的研究。为了整合大量神经元,神经元需要设计占据一个小面积,而是随着技术缩小,模拟神经元难以缩放,并且它们遭受降低的电压净空/动态范围和电路非线性。鉴于此,本文首先模拟了在28nm工艺中设计的现有电流镜的电压域神经元的非线性行为,并显示了神经元非线性的效果严重降低了SNN推理精度。然后,为了减轻这个问题,我们提出了一种新的神经元,该新型神经元在时域中加入输入的尖峰,并且大大改善了线性度,从而改善了与现有电压域神经元相比的推理精度。在Mnist DataSet上进行测试,所提出的神经元的推理误差率与理想神经元的引起误差率不同于0.1%。
translated by 谷歌翻译