尖峰神经网络(SNN)是一种受脑启发的模型,具有更时空的信息处理能力和计算能效效率。但是,随着SNN深度的增加,由SNN​​的重量引起的记忆问题逐渐引起了人们的注意。受到人工神经网络(ANN)量化技术的启发,引入了二进制SNN(BSNN)来解决记忆问题。由于缺乏合适的学习算法,BSNN通常由ANN-SNN转换获得,其准确性将受到训练有素的ANN的限制。在本文中,我们提出了具有准确性损失估计器的超低潜伏期自适应局部二进制二进制尖峰神经网络(ALBSNN),该网络层动态选择要进行二进制的网络层,以通过评估由二进制重量引起的错误来确保网络的准确性在网络学习过程中。实验结果表明,此方法可以将存储空间降低超过20%,而不会丢失网络准确性。同时,为了加速网络的训练速度,引入了全球平均池(GAP)层,以通过卷积和合并的组合替换完全连接的层,以便SNN可以使用少量时间获得更好识别准确性的步骤。在仅使用一个时间步骤的极端情况下,我们仍然可以在三个不同的数据集(FashionMnist,CIFAR-10和CIFAR-10和CIFAR-100)上获得92.92%,91.63%和63.54%的测试精度。
translated by 谷歌翻译
由于它们的时间加工能力及其低交换(尺寸,重量和功率)以及神经形态硬件中的节能实现,尖峰神经网络(SNNS)已成为传统人工神经网络(ANN)的有趣替代方案。然而,培训SNNS所涉及的挑战在准确性方面有限制了它们的表现,从而限制了他们的应用。因此,改善更准确的特征提取的学习算法和神经架构是SNN研究中的当前优先级之一。在本文中,我们展示了现代尖峰架构的关键组成部分的研究。我们在从最佳执行网络中凭经验比较了图像分类数据集中的不同技术。我们设计了成功的残余网络(Reset)架构的尖峰版本,并测试了不同的组件和培训策略。我们的结果提供了SNN设计的最新版本,它允许在尝试构建最佳视觉特征提取器时进行明智的选择。最后,我们的网络优于CIFAR-10(94.1%)和CIFAR-100(74.5%)数据集的先前SNN架构,并将现有技术与DVS-CIFAR10(71.3%)相匹配,参数较少而不是先前的状态艺术,无需安静转换。代码在https://github.com/vicenteax/spiking_resnet上获得。
translated by 谷歌翻译
我们提出了一种新的学习算法,使用传统的人工神经网络(ANN)作为代理训练尖刺神经网络(SNN)。我们分别与具有相同网络架构和共享突触权重的集成和火(IF)和Relu神经元进行两次SNN和ANN网络。两个网络的前进通过完全独立。通过假设具有速率编码的神经元作为Relu的近似值,我们将SNN中的SNN的误差进行了回复,以更新共享权重,只需用SNN的ANN最终输出替换ANN最终输出。我们将建议的代理学习应用于深度卷积的SNNS,并在Fahion-Mnist和CiFar10的两个基准数据集上进行评估,分别为94.56%和93.11%的分类准确性。所提出的网络可以优于培训的其他深鼻涕,训练,替代学习,代理梯度学习,或从深处转换。转换的SNNS需要长时间的仿真时间来达到合理的准确性,而我们的代理学习导致高效的SNN,模拟时间较短。
translated by 谷歌翻译
尖峰神经网络(SNNS)是脑激发的模型,可在神经形状硬件上实现节能实现。然而,由于尖刺神经元模型的不连续性,SNN的监督培训仍然是一个难题。大多数现有方法模仿人工神经网络的BackProjagation框架和前馈架构,并在尖峰时间使用代理衍生物或计算梯度来处理问题。这些方法累积近似误差,或者仅通过现有尖峰被限制地传播信息,并且通常需要沿着具有大的内存成本和生物言行的时间步长的信息传播。在这项工作中,我们考虑反馈尖刺神经网络,这些神经网络更为大脑,并提出了一种新的训练方法,不依赖于前向计算的确切反向。首先,我们表明,具有反馈连接的SNN的平均触发速率将沿着时间的时间逐渐发展到均衡状态,这沿着定点方程沿着时间延续。然后通过将反馈SNN的前向计算作为这种等式的黑匣子求解器,并利用了方程上的隐式差异,我们可以计算参数的梯度而不考虑确切的前向过程。以这种方式,向前和向后程序被解耦,因此避免了不可微分的尖峰功能的问题。我们还简要介绍了隐含分化的生物合理性,这只需要计算另一个平衡。在Mnist,Fashion-Mnist,N-Mnist,CiFar-10和CiFar-100上进行了广泛的实验,证明了我们在少量时间步骤中具有较少神经元和参数的反馈模型的方法的优越性。我们的代码是在https://github.com/pkuxmq/ide-fsnn中获得的。
translated by 谷歌翻译
我们最近提出了S4NN算法,基本上是对多层尖峰神经网络的反向化的适应,该网上网络使用简单的非泄漏整合和火神经元和一种形式称为第一峰值编码的时间编码。通过这种编码方案,每次刺激最多一次都是神经元火灾,但射击令携带信息。这里,我们引入BS4NN,S4NN的修改,其中突触权重被约束为二进制(+1或-1),以便减少存储器(理想情况下,每个突触的一个比特)和计算占地面积。这是使用两组权重完成:首先,通过梯度下降更新的实际重量,并在BackProjagation的后退通行证中使用,其次是在前向传递中使用的迹象。类似的策略已被用于培训(非尖峰)二值化神经网络。主要区别在于BS4NN在时域中操作:尖峰依次繁殖,并且不同的神经元可以在不同时间达到它们的阈值,这增加了计算能力。我们验证了两个流行的基准,Mnist和Fashion-Mnist上的BS4NN,并获得了这种网络的合理精度(分别为97.0%和87.3%),具有可忽略的准确率,具有可忽略的重量率(0.4%和0.7%,分别)。我们还展示了BS4NN优于具有相同架构的简单BNN,在这两个数据集上(分别为0.2%和0.9%),可能是因为它利用时间尺寸。建议的BS4NN的源代码在HTTPS://github.com/srkh/bs4nn上公开可用。
translated by 谷歌翻译
由于其强大的时空信息表示能力,尖峰神经网络(SNN)引起了很多关注。胶囊神经网络(CAPSNET)在不同级别的组装和耦合功能方面做得好。在这里,我们通过将胶囊引入尖刺神经网络的建模来提出尖峰帽。此外,我们提出了更具生物合理的尖峰定时依赖性可塑性路线机构。通过充分考虑低水平尖峰胶囊与高级尖峰胶囊之间的时空关系,它们之间的耦合能力进一步提高。我们在Mnist和FashionMnist数据集上进行了验证的实验。与其他优秀的SNN模型相比,我们的算法仍然实现了高性能。我们的尖峰帽完全结合了SNN和Capsnet的增强,并对噪声和仿射变换表现出强大的稳健性。通过向测试数据集添加不同的盐胡椒和高斯噪声,实验结果表明,当有更多的噪音时,我们的尖峰帽显示出更强大的性能,而人工神经网络无法正确澄清。同样,我们的尖峰帽显示出强烈的概括,可以在漂式数据集上仿射转换。
translated by 谷歌翻译
Spiking neural networks (SNN) are a viable alternative to conventional artificial neural networks when energy efficiency and computational complexity are of importance. A major advantage of SNNs is their binary information transfer through spike trains. The training of SNN has, however, been a challenge, since neuron models are non-differentiable and traditional gradient-based backpropagation algorithms cannot be applied directly. Furthermore, spike-timing-dependent plasticity (STDP), albeit being a spike-based learning rule, updates weights locally and does not optimize for the output error of the network. We present desire backpropagation, a method to derive the desired spike activity of neurons from the output error. The loss function can then be evaluated locally for every neuron. Incorporating the desire values into the STDP weight update leads to global error minimization and increasing classification accuracy. At the same time, the neuron dynamics and computational efficiency of STDP are maintained, making it a spike-based supervised learning rule. We trained three-layer networks to classify MNIST and Fashion-MNIST images and reached an accuracy of 98.41% and 87.56%, respectively. Furthermore, we show that desire backpropagation is computationally less complex than backpropagation in traditional neural networks.
translated by 谷歌翻译
尖峰神经网络是低功率环境的有效计算模型。基于SPIKE的BP算法和ANN-TO-SNN(ANN2SNN)转换是SNN培训的成功技术。然而,尖峰碱BP训练速度很慢,需要大量的记忆成本。尽管Ann2NN提供了一种培训SNN的低成本方式,但它需要许多推理步骤才能模仿训练有素的ANN以表现良好。在本文中,我们提出了一个snn-to-ang(SNN2ANN)框架,以快速和记忆的方式训练SNN。 SNN2ANN由2个组成部分组成:a)ANN和SNN和B)尖峰映射单元之间的重量共享体系结构。首先,该体系结构在ANN分支上训练重量共享参数,从而快速训练和SNN的记忆成本较低。其次,尖峰映射单元确保ANN的激活值是尖峰特征。结果,可以通过训练ANN分支来优化SNN的分类误差。此外,我们设计了一种自适应阈值调整(ATA)算法来解决嘈杂的尖峰问题。实验结果表明,我们的基于SNN2ANN的模型在基准数据集(CIFAR10,CIFAR100和TININE-IMAGENET)上表现良好。此外,SNN2ANN可以在0.625倍的时间步长,0.377倍训练时间,0.27倍GPU内存成本以及基于SPIKE的BP模型的0.33倍尖峰活动下实现可比精度。
translated by 谷歌翻译
Spiking Neural networks (SNN) have emerged as an attractive spatio-temporal computing paradigm for a wide range of low-power vision tasks. However, state-of-the-art (SOTA) SNN models either incur multiple time steps which hinder their deployment in real-time use cases or increase the training complexity significantly. To mitigate this concern, we present a training framework (from scratch) for one-time-step SNNs that uses a novel variant of the recently proposed Hoyer regularizer. We estimate the threshold of each SNN layer as the Hoyer extremum of a clipped version of its activation map, where the clipping threshold is trained using gradient descent with our Hoyer regularizer. This approach not only downscales the value of the trainable threshold, thereby emitting a large number of spikes for weight update with a limited number of iterations (due to only one time step) but also shifts the membrane potential values away from the threshold, thereby mitigating the effect of noise that can degrade the SNN accuracy. Our approach outperforms existing spiking, binary, and adder neural networks in terms of the accuracy-FLOPs trade-off for complex image recognition tasks. Downstream experiments on object detection also demonstrate the efficacy of our approach.
translated by 谷歌翻译
由于稀疏,异步和二进制事件(或尖峰)驱动加工,尖峰神经网络(SNNS)最近成为深度学习的替代方案,可以在神经形状硬件上产生巨大的能效益。然而,从划痕训练高精度和低潜伏期的SNN,患有尖刺神经元的非微弱性质。要在SNNS中解决此培训问题,我们重新批准批量标准化,并通过时间(BNTT)技术提出时间批量标准化。大多数先前的SNN工程到现在忽略了批量标准化,认为它无效地训练时间SNN。与以前的作品不同,我们提出的BNTT沿着时轴沿着时间轴解耦的参数,以捕获尖峰的时间动态。在BNTT中的时间上不断发展的可学习参数允许神经元通过不同的时间步长来控制其尖峰率,从头开始实现低延迟和低能量训练。我们对CiFar-10,CiFar-100,微小想象特和事件驱动的DVS-CIFAR10数据集进行实验。 BNTT允许我们首次在三个复杂的数据集中培训深度SNN架构,只需25-30步即可。我们还使用BNTT中的参数分布提前退出算法,以降低推断的延迟,进一步提高了能量效率。
translated by 谷歌翻译
尖峰神经网络(SNNS)是一种实用方法,可以通过模拟神经元对时间信息的杠杆作用来进行更高的数据有效学习。在本文中,我们提出了时间通道联合注意(TCJA)架构单元,这是一种有效的SNN技术,依赖于注意机制,通过有效地沿空间和时间维度沿着尖峰序列的相关性来实现。我们的基本技术贡献在于:1)通过采用挤压操作,将尖峰流压缩为平均矩阵,然后使用具有高效1-D卷积的两种局部注意机制来建立时间和渠道关系,以在频道和渠道关系中进行特征提取灵活的时尚。 2)利用交叉卷积融合(CCF)层在时间范围和通道范围之间建模相互依赖性,从而破坏了两个维度的独立性,并实现了特征之间的相互作用。通过共同探索和重新启用数据流,我们的方法在所有测试的主流静态和神经形态数据集上,在包括时尚量的所有测试的主流静态数据集上,最高可先进的(SOTA)高达15.7% ,CIFAR10-DVS,N-Caltech 101和DVS128手势。
translated by 谷歌翻译
由于具有高生物学合理性和低能消耗在神经形态硬件上的特性,因此尖峰神经网络(SNN)非常重要。作为获得深SNN的有效方法,转化方法在各种大型数据集上表现出高性能。但是,它通常遭受严重的性能降解和高时间延迟。特别是,以前的大多数工作都集中在简单的分类任务上,同时忽略了与ANN输出的精确近似。在本文中,我们首先从理论上分析转换误差,并得出时间变化极端对突触电流的有害影响。我们提出尖峰校准(Spicalib),以消除离散尖峰对输出分布的损坏,并修改脂肪,以使任意最大化层无损地转换。此外,提出了针对最佳标准化参数的贝叶斯优化,以避免经验设置。实验结果证明了分类,对象检测和分割任务的最新性能。据我们所知,这是第一次获得与ANN同时在这些任务上相当的SNN。此外,我们只需要先前在检测任务上工作的1/50推理时间,并且可以在0.492 $ \ times $ $下在分段任务上实现相同的性能。
translated by 谷歌翻译
反向传播算法促进了深度学习的快速发展,但它依赖大量标记的数据,并且人类学习的方式仍然存在很大的差距。人的大脑可以以自组织和无监督的方式迅速学习各种概念知识,这是通过人类大脑中多个学习规则和结构的协调来实现的。依赖峰值的依赖性可塑性(STDP)是大脑中广泛的学习规则,但是单独使用STDP训练的尖峰神经网络效率低下且性能差。在本文中,从短期突触可塑性中汲取灵感,我们设计了一种自适应突触过滤器,并将自适应阈值平衡作为神经元可塑性介绍,以丰富SNN的表示能力。我们还引入了自适应的横向抑制连接,以动态调整尖峰平衡,以帮助网络学习更丰富的功能。为了加速和稳定无监督的尖峰神经网络的训练,我们设计了一个样本的时间批次STDP,该STDP根据多个样本和多个矩来更新重量。我们已经进行了有关MNIST和FashionMnist的实验,并实现了基于STDP的当前无监督的尖峰神经网络的最先进性能。我们的模型在小样本学习中还显示出强烈的优势。
translated by 谷歌翻译
Spiking neural networks (SNNs) are receiving increasing attention due to their low power consumption and strong bio-plausibility. Optimization of SNNs is a challenging task. Two main methods, artificial neural network (ANN)-to-SNN conversion and spike-based backpropagation (BP), both have their advantages and limitations. For ANN-to-SNN conversion, it requires a long inference time to approximate the accuracy of ANN, thus diminishing the benefits of SNN. With spike-based BP, training high-precision SNNs typically consumes dozens of times more computational resources and time than their ANN counterparts. In this paper, we propose a novel SNN training approach that combines the benefits of the two methods. We first train a single-step SNN by approximating the neural potential distribution with random noise, then convert the single-step SNN to a multi-step SNN losslessly. The introduction of Gaussian distributed noise leads to a significant gain in accuracy after conversion. The results show that our method considerably reduces the training and inference times of SNNs while maintaining their high accuracy. Compared to the previous two methods, ours can reduce training time by 65%-75% and achieves more than 100 times faster inference speed. We also argue that the neuron model augmented with noise makes it more bio-plausible.
translated by 谷歌翻译
Emergence of deep neural networks (DNNs) has raised enormous attention towards artificial neural networks (ANNs) once again. They have become the state-of-the-art models and have won different machine learning challenges. Although these networks are inspired by the brain, they lack biological plausibility, and they have structural differences compared to the brain. Spiking neural networks (SNNs) have been around for a long time, and they have been investigated to understand the dynamics of the brain. However, their application in real-world and complicated machine learning tasks were limited. Recently, they have shown great potential in solving such tasks. Due to their energy efficiency and temporal dynamics there are many promises in their future development. In this work, we reviewed the structures and performances of SNNs on image classification tasks. The comparisons illustrate that these networks show great capabilities for more complicated problems. Furthermore, the simple learning rules developed for SNNs, such as STDP and R-STDP, can be a potential alternative to replace the backpropagation algorithm used in DNNs.
translated by 谷歌翻译
尖峰神经网络(SNNS)模仿大脑中信息传播可以通过离散和稀疏的尖峰来能够能够通过离散和稀疏的尖峰来处理时空信息,从而受到相当大的关注。为了提高SNN的准确性和能源效率,大多数以前的研究仅集中在训练方法上,并且很少研究建筑的效果。我们研究了先前研究中使用的设计选择,从尖峰的准确性和数量来看,发现它们不是最适合SNN的。为了进一步提高准确性并减少SNN产生的尖峰,我们提出了一个称为Autosnn的尖峰感知神经体系结构搜索框架。我们定义一个搜索空间,该搜索空间由架构组成,而没有不良的设计选择。为了启用Spike-Aware Architecture搜索,我们引入了一种健身,该健身既考虑尖峰的准确性和数量。 Autosnn成功地搜索了SNN体系结构,这些体系结构在准确性和能源效率方面都超过了手工制作的SNN。我们彻底证明了AutoSNN在包括神经形态数据集在内的各种数据集上的有效性。
translated by 谷歌翻译
脑启发的尖峰神经网络(SNN)已成功应用于许多模式识别域。基于SNN的深层结构在感知任务(例如图像分类,目标检测)中取得了可观的结果。但是,深SNN在加强学习(RL)任务中的应用仍然是一个问题。尽管以前有关于SNN和RL组合的研究,但其中大多数专注于浅网络的机器人控制问题,或使用ANN-SNN转换方法来实施Spiking Spiking Deep Q Network(SDQN)。在这项工作中,我们数学分析了SDQN中尖峰信号特征消失的问题,并提出了一种基于潜在的层归一化(PBLN)方法,以直接训练尖峰尖峰深度Q网络。实验表明,与最先进的ANN-SNN转换方法和其他SDQN作品相比,建议的PBLN Spiking Deep Q Networks(PL-SDQN)在Atari游戏任务上取得了更好的性能。
translated by 谷歌翻译
Event-based simulations of Spiking Neural Networks (SNNs) are fast and accurate. However, they are rarely used in the context of event-based gradient descent because their implementations on GPUs are difficult. Discretization with the forward Euler method is instead often used with gradient descent techniques but has the disadvantage of being computationally expensive. Moreover, the lack of precision of discretized simulations can create mismatches between the simulated models and analog neuromorphic hardware. In this work, we propose a new exact error-backpropagation through spikes method for SNNs, extending Fast \& Deep to multiple spikes per neuron. We show that our method can be efficiently implemented on GPUs in a fully event-based manner, making it fast to compute and precise enough for analog neuromorphic hardware. Compared to the original Fast \& Deep and the current state-of-the-art event-based gradient-descent algorithms, we demonstrate increased performance on several benchmark datasets with both feedforward and convolutional SNNs. In particular, we show that multi-spike SNNs can have advantages over single-spike networks in terms of convergence, sparsity, classification latency and sensitivity to the dead neuron problem.
translated by 谷歌翻译
尖峰神经网络(SNNS)模仿大脑计算策略,并在时空信息处理中表现出很大的功能。作为人类感知的基本因素,视觉关注是指生物视觉系统中显着区域的动态选择过程。尽管视觉注意力的机制在计算机视觉上取得了巨大成功,但很少会引入SNN中。受到预测注意重新映射的实验观察的启发,我们在这里提出了一种新的时空通道拟合注意力(SCTFA)模块,该模块可以通过使用历史积累的空间通道信息来指导SNN有效地捕获潜在的目标区域。通过在三个事件流数据集(DVS手势,SL-Animals-DVS和MNIST-DVS)上进行系统评估,我们证明了带有SCTFA模块(SCTFA-SNN)的SNN不仅显着超过了基线SNN(BL-SNN)(BL-SNN)(BL-SNN)以及其他两个具有退化注意力模块的SNN模型,但也通过现有最新方法实现了竞争精度。此外,我们的详细分析表明,所提出的SCTFA-SNN模型对噪声和出色的稳定性具有强大的稳健性,同时保持了可接受的复杂性和效率。总体而言,这些发现表明,适当纳入大脑的认知机制可能会提供一种有希望的方法来提高SNN的能力。
translated by 谷歌翻译
Spiking neural networks (SNNs) are promising brain-inspired energy-efficient models. Recent progress in training methods has enabled successful deep SNNs on large-scale tasks with low latency. Particularly, backpropagation through time (BPTT) with surrogate gradients (SG) is popularly used to achieve high performance in a very small number of time steps. However, it is at the cost of large memory consumption for training, lack of theoretical clarity for optimization, and inconsistency with the online property of biological learning and rules on neuromorphic hardware. Other works connect spike representations of SNNs with equivalent artificial neural network formulation and train SNNs by gradients from equivalent mappings to ensure descent directions. But they fail to achieve low latency and are also not online. In this work, we propose online training through time (OTTT) for SNNs, which is derived from BPTT to enable forward-in-time learning by tracking presynaptic activities and leveraging instantaneous loss and gradients. Meanwhile, we theoretically analyze and prove that gradients of OTTT can provide a similar descent direction for optimization as gradients based on spike representations under both feedforward and recurrent conditions. OTTT only requires constant training memory costs agnostic to time steps, avoiding the significant memory costs of BPTT for GPU training. Furthermore, the update rule of OTTT is in the form of three-factor Hebbian learning, which could pave a path for online on-chip learning. With OTTT, it is the first time that two mainstream supervised SNN training methods, BPTT with SG and spike representation-based training, are connected, and meanwhile in a biologically plausible form. Experiments on CIFAR-10, CIFAR-100, ImageNet, and CIFAR10-DVS demonstrate the superior performance of our method on large-scale static and neuromorphic datasets in small time steps.
translated by 谷歌翻译