概率程序为生成模型提供了表达性表示语言。给定概率程序,我们对后验推断的任务感兴趣:在给定一组观察到的变量的情况下,估计潜在变量。现有的概率计划中推断技术通常需要选择许多超参数,在计算上是昂贵的,并且/或仅适用于限制类别的程序。在这里,我们将推断作为掩盖语言建模:给定程序,我们生成了一个监督的变量和作业数据集,并随机掩盖了作业的子集。然后,我们训练神经网络以揭示随机值,从而定义了近似后验分布。通过在各种程序中优化单个神经网络,我们可以摊销培训的成本,从而产生“基础”后部能够对新程序进行零弹性推断。基础后验也可以通过优化变异推理目标来微调特定程序和数据集。我们在Stan程序的基准上显示了该方法的功效,零射和微调。
translated by 谷歌翻译
项目反应理论(IRT)是一个无处不在的模型,可以根据他们对问题的回答理解人类行为和态度。大型现代数据集为捕捉人类行为的更多细微差别提供了机会,从而有可能改善心理测量模型,从而改善科学理解和公共政策。但是,尽管较大的数据集允许采用更灵活的方法,但许多用于拟合IRT模型的当代算法也可能具有禁止现实世界应用的巨大计算需求。为了解决这种瓶颈,我们引入了IRT的变异贝叶斯推理算法,并表明它在不牺牲准确性的情况下快速可扩展。将此方法应用于认知科学和教育的五个大规模项目响应数据集中,比替代推理算法更高的对数可能性和更高的准确性。然后,使用这种新的推论方法,我们将IRT概括为具有表现力的贝叶斯响应模型,利用深度学习的最新进展来捕获具有神经网络的非线性项目特征曲线(ICC)。使用TIMSS的特定级数学测试,我们显示我们的非线性IRT模型可以捕获有趣的不对称ICC。该算法实现是开源的,易于使用。
translated by 谷歌翻译
我们提出了一种学习限制概率程序后部推理算法的元算法。我们的元算法采用培训一组概率程序,该程序描述了具有观察的模型,并试图学习有效的方法,以推断类似程序的后部。我们方法的一个关键特征是使用我们所谓的白盒推理算法,其直接从模型描述本身提取信息,作为程序。具体地,我们的白盒推理算法配备了多个神经网络,一个用于每种类型的原子命令,并且通过使用这些网络分析程序中的个体原子命令来计算给定概率的程序的近似。从我们的元算法训练中汲取网络的参数。我们经验证明学习推理算法很好地概括了在参数和模型结构方面都是新的程序,以及我们的方法比诸如HMC等替代方法实现更大的测试时间效率的报告案例。整体结果表明了承诺以及我们对方法的挑战。
translated by 谷歌翻译
One of the core problems of modern statistics is to approximate difficult-to-compute probability densities. This problem is especially important in Bayesian statistics, which frames all inference about unknown quantities as a calculation involving the posterior density. In this paper, we review variational inference (VI), a method from machine learning that approximates probability densities through optimization. VI has been used in many applications and tends to be faster than classical methods, such as Markov chain Monte Carlo sampling. The idea behind VI is to first posit a family of densities and then to find the member of that family which is close to the target. Closeness is measured by Kullback-Leibler divergence. We review the ideas behind mean-field variational inference, discuss the special case of VI applied to exponential family models, present a full example with a Bayesian mixture of Gaussians, and derive a variant that uses stochastic optimization to scale up to massive data. We discuss modern research in VI and highlight important open problems. VI is powerful, but it is not yet well understood. Our hope in writing this paper is to catalyze statistical research on this class of algorithms.
translated by 谷歌翻译
现代深度学习方法构成了令人难以置信的强大工具,以解决无数的挑战问题。然而,由于深度学习方法作为黑匣子运作,因此与其预测相关的不确定性往往是挑战量化。贝叶斯统计数据提供了一种形式主义来理解和量化与深度神经网络预测相关的不确定性。本教程概述了相关文献和完整的工具集,用于设计,实施,列车,使用和评估贝叶斯神经网络,即使用贝叶斯方法培训的随机人工神经网络。
translated by 谷歌翻译
统计模型是机器学习的核心,具有广泛适用性,跨各种下游任务。模型通常由通过最大似然估计从数据估计的自由参数控制。但是,当面对现实世界数据集时,许多模型运行到一个关键问题:它们是在完全观察到的数据方面配制的,而在实践中,数据集会困扰缺失数据。来自不完整数据的统计模型估计理论在概念上类似于潜在变量模型的估计,其中存在强大的工具,例如变分推理(VI)。然而,与标准潜在变量模型相比,具有不完整数据的参数估计通常需要估计缺失变量的指数 - 许多条件分布,因此使标准的VI方法是棘手的。通过引入变分Gibbs推理(VGI),是一种新的通用方法来解决这个差距,以估计来自不完整数据的统计模型参数。我们在一组合成和实际估算任务上验证VGI,从不完整的数据中估算重要的机器学习模型,VAE和标准化流程。拟议的方法,同时通用,实现比现有的特定模型特定估计方法竞争或更好的性能。
translated by 谷歌翻译
在本文中,我们试图通过引入深度学习模型的句法归纳偏见来建立两所学校之间的联系。我们提出了两个归纳偏见的家族,一个家庭用于选区结构,另一个用于依赖性结构。选区归纳偏见鼓励深度学习模型使用不同的单位(或神经元)分别处理长期和短期信息。这种分离为深度学习模型提供了一种方法,可以从顺序输入中构建潜在的层次表示形式,即更高级别的表示由高级表示形式组成,并且可以分解为一系列低级表示。例如,在不了解地面实际结构的情况下,我们提出的模型学会通过根据其句法结构组成变量和运算符的表示来处理逻辑表达。另一方面,依赖归纳偏置鼓励模型在输入序列中找到实体之间的潜在关系。对于自然语言,潜在关系通常被建模为一个定向依赖图,其中一个单词恰好具有一个父节点和零或几个孩子的节点。将此约束应用于类似变压器的模型之后,我们发现该模型能够诱导接近人类专家注释的有向图,并且在不同任务上也优于标准变压器模型。我们认为,这些实验结果为深度学习模型的未来发展展示了一个有趣的选择。
translated by 谷歌翻译
灵感来自HTTPS://Doi.org/10.1515/Jagi-2016-0001中呈现的“认知时间玻璃”模型,我们为开发旨在认知机器人的认知架构提出了一个新的框架。拟议框架的目的是通过鼓励和减轻合作和重复使用现有结果来缓解认知架构的发展。这是通过提出将认知架构的发展分成一系列层的框架来完成,该层可以部分地被认为是隔离的,其中一些可以与其他研究领域直接相关。最后,我们向拟议框架介绍和审查一些主题。
translated by 谷歌翻译
这项正在进行的工作旨在为统计学习提供统一的介绍,从诸如GMM和HMM等经典模型到现代神经网络(如VAE和扩散模型)缓慢地构建。如今,有许多互联网资源可以孤立地解释这一点或新的机器学习算法,但是它们并没有(也不能在如此简短的空间中)将这些算法彼此连接起来,或者与统计模型的经典文献相连现代算法出现了。同样明显缺乏的是一个单一的符号系统,尽管对那些已经熟悉材料的人(如这些帖子的作者)不满意,但对新手的入境造成了重大障碍。同样,我的目的是将各种模型(尽可能)吸收到一个用于推理和学习的框架上,表明(以及为什么)如何以最小的变化将一个模型更改为另一个模型(其中一些是新颖的,另一些是文献中的)。某些背景当然是必要的。我以为读者熟悉基本的多变量计算,概率和统计以及线性代数。这本书的目标当然不是​​完整性,而是从基本知识到过去十年中极强大的新模型的直线路径或多或少。然后,目标是补充而不是替换,诸如Bishop的\ emph {模式识别和机器学习}之类的综合文本,该文本现在已经15岁了。
translated by 谷歌翻译
We develop stochastic variational inference, a scalable algorithm for approximating posterior distributions. We develop this technique for a large class of probabilistic models and we demonstrate it with two probabilistic topic models, latent Dirichlet allocation and the hierarchical Dirichlet process topic model. Using stochastic variational inference, we analyze several large collections of documents: 300K articles from Nature, 1.8M articles from The New York Times, and 3.8M articles from Wikipedia. Stochastic inference can easily handle data sets of this size and outperforms traditional variational inference, which can only handle a smaller subset. (We also show that the Bayesian nonparametric topic model outperforms its parametric counterpart.) Stochastic variational inference lets us apply complex Bayesian models to massive data sets.
translated by 谷歌翻译
目前,难以获得贝叶斯方法深入学习的好处,这允许明确的知识规范,准确地捕获模型不确定性。我们呈现先前数据拟合网络(PFN)。 PFN利用大规模机器学习技术来近似一组一组后索。 PFN唯一要求工作的要求是能够从先前分配通过监督的学习任务(或函数)来采样。我们的方法将后近似的目标重新定为具有带有值的输入的监督分类问题:它反复从先前绘制任务(或功能),从中绘制一组数据点及其标签,掩盖其中一个标签并学习基于其余数据点的设定值输入对其进行概率预测。呈现来自新的监督学习任务的一组样本作为输入,PFNS在单个前向传播中对任意其他数据点进行概率预测,从而学习到近似贝叶斯推断。我们展示了PFN可以接近完全模仿高斯过程,并且还可以实现高效的贝叶斯推理对难以处理的问题,与当前方法相比,多个设置中有超过200倍的加速。我们在非常多样化的地区获得强烈的结果,如高斯过程回归,贝叶斯神经网络,小型表格数据集的分类,以及少量图像分类,展示了PFN的一般性。代码和培训的PFN在https://github.com/automl/transformerscandobayesianinference发布。
translated by 谷歌翻译
How can we perform efficient inference and learning in directed probabilistic models, in the presence of continuous latent variables with intractable posterior distributions, and large datasets? We introduce a stochastic variational inference and learning algorithm that scales to large datasets and, under some mild differentiability conditions, even works in the intractable case. Our contributions is two-fold. First, we show that a reparameterization of the variational lower bound yields a lower bound estimator that can be straightforwardly optimized using standard stochastic gradient methods. Second, we show that for i.i.d. datasets with continuous latent variables per datapoint, posterior inference can be made especially efficient by fitting an approximate inference model (also called a recognition model) to the intractable posterior using the proposed lower bound estimator. Theoretical advantages are reflected in experimental results.
translated by 谷歌翻译
大型语言模型在各种任务上显示出令人印象深刻的几次结果。但是,当知识是此类结果的关键时,就像问题回答和事实检查之类的任务一样,似乎需要存储知识的大量参数计数。众所周知,检索增强模型可以在不需要多个参数的情况下在知识密集的任务上表现出色,但是目前尚不清楚它们是否在几个弹药设置中工作。在这项工作中,我们介绍了地图集,这是一个经过精心设计和预先训练的增强语言模型,能够通过很少的培训示例学习知识密集型任务。我们对包括MMLU,苏格兰短裙和归类等各种任务进行评估,并研究文档索引内容的影响,表明它可以很容易地进行更新。值得注意的是,在自然问题上仅使用64个示例在自然问题上达到超过42 \%的准确性,尽管参数少了50倍,但比540B参数模型的表现优于540b参数模型。
translated by 谷歌翻译
我们提出了Pangu-Coder,这是一种仅预读的解码器语言模型,该模型采用pangu-alpha架构进行文本到代码生成,即给定自然语言问题描述的编程语言解决方案的合成。我们使用两阶段策略训练Pangu-Coder:第一阶段采用因果语言建模(CLM)来预先培训原始编程语言数据,而第二阶段则使用因果语言建模和掩盖语言建模(MLM)的组合培训目标,专注于文本到代码生成的下游任务,并培训松散的自然语言程序定义和代码功能。最后,我们讨论了pangu-coder-ft,该pander the是通过竞争性编程问题和代码与持续集成测试的结合进行了微调的。我们评估了pangu-coder,重点是它是否生成功能上正确的程序,并证明它在参加较小的上下文窗口和较少的数据培训的同时,它比诸如Codex之类的类似大小的模型(例如Codex)实现等效性或更好的性能。
translated by 谷歌翻译
The success of machine learning algorithms generally depends on data representation, and we hypothesize that this is because different representations can entangle and hide more or less the different explanatory factors of variation behind the data. Although specific domain knowledge can be used to help design representations, learning with generic priors can also be used, and the quest for AI is motivating the design of more powerful representation-learning algorithms implementing such priors. This paper reviews recent work in the area of unsupervised feature learning and deep learning, covering advances in probabilistic models, auto-encoders, manifold learning, and deep networks. This motivates longer-term unanswered questions about the appropriate objectives for learning good representations, for computing representations (i.e., inference), and the geometrical connections between representation learning, density estimation and manifold learning.
translated by 谷歌翻译
对于使用高性能机器学习算法通常不透明的决策,人们越来越担心。用特定于领域的术语对推理过程的解释对于在医疗保健等风险敏感领域中采用至关重要。我们认为,机器学习算法应该可以通过设计来解释,并且表达这些解释的语言应与域和任务有关。因此,我们将模型的预测基于数据的用户定义和特定于任务的二进制函数,每个都对最终用户有明确的解释。然后,我们最大程度地减少了在任何给定输入上准确预测所需的预期查询数。由于解决方案通常是棘手的,因此在事先工作之后,我们根据信息增益顺序选择查询。但是,与以前的工作相反,我们不必假设查询在有条件地独立。取而代之的是,我们利用随机生成模型(VAE)和MCMC算法(未经调整的Langevin)来选择基于先前的查询 - 答案的输入的最有用的查询。这使得在线确定要解决预测歧义所需的任何深度的查询链。最后,关于视觉和NLP任务的实验证明了我们的方法的功效及其优越性比事后解释的优势。
translated by 谷歌翻译
我们通过为变压器嵌入的变异信息瓶颈常规剂开发变压器提出了VAE。我们将变压器编码器的嵌入空间形式化为混合概率分布,并使用贝叶斯非参数来推导非参数变化信息瓶颈(NVIB)来用于此类基于注意力的嵌入。非参数方法支持的混合成分数量可变数量,可捕获注意力支持的向量数量,而我们的非参数分布的交换性捕获了注意力的置换不变性。这使得NVIB能够将注意力访问的向量数量以及各个向量中的信息量进行正规化。通过将变压器编码器与NVIB进行正规注意,我们提出了一个非参数变异自动编码器(NVAE)。关于训练自然语言文本的NVAE的最初实验表明,诱导的嵌入空间具有VAE对于变压器的所需特性。
translated by 谷歌翻译
推理是绘制关于未观察变量的结论的任务,给出了相关变量的观察。应用范围从鉴定症状的疾病从价格转移到分类经济制度。遗憾的是,执行精确的推论通常是棘手的。一种替代方案是变分推理,其中优化了候选概率分布以近似于未观察变量的后部分布。为了良好的近似,希望灵活和高度表现力的候选分布。在这项工作中,我们将量子出生的机器用作离散变量的变形分布。我们应用操作员变异推理的框架来实现这一目标。特别是,我们采用了两种特定的实现:一个具有对抗的目标,一个基于肠道斯坦的差异。我们使用贝叶斯网络的示例进行了数控展示了方法,并在IBM量子计算机上实施实验。我们的技术能够实现高效的变分推理,其分布在经典计算机上有效地表示的分布。
translated by 谷歌翻译
自动编码变化贝叶斯(AEVB)是一种用于拟合潜在变量模型(无监督学习的有前途的方向)的强大而通用的算法,并且是训练变量自动编码器(VAE)的众所周知的。在本教程中,我们专注于从经典的期望最大化(EM)算法中激励AEVB,而不是确定性自动编码器。尽管自然而有些不言而喻,但在最近的深度学习文献中并未强调EM与AEVB之间的联系,我们认为强调这种联系可以改善社区对AEVB的理解。特别是,我们发现(1)优化有关推理参数的证据下限(ELBO)作为近似E-step,并且(2)优化ELBO相对于生成参数作为近似M-step;然后,与AEVB中的同时进行同时进行,然后同时拧紧并推动Elbo。我们讨论如何将近似E-Step解释为执行变异推断。详细讨论了诸如摊销和修复技巧之类的重要概念。最后,我们从划痕中得出了非深度和几个深层变量模型的AEVB训练程序,包括VAE,有条件的VAE,高斯混合物VAE和变异RNN。我们希望读者能够将AEVB认识为一种通用算法,可用于拟合广泛的潜在变量模型(不仅仅是VAE),并将AEVB应用于自己的研究领域中出现的此类模型。所有纳入型号的Pytorch代码均可公开使用。
translated by 谷歌翻译
象征性的AI社区越来越多地试图在神经符号结构中接受机器学习,但由于文化障碍,仍在挣扎。为了打破障碍,这份相当有思想的个人备忘录试图解释和纠正统计,机器学习和深入学习的惯例,从局外人的角度进行深入学习。它提供了一个分步协议,用于设计一个机器学习系统,该系统满足符号AI社区认真对待所必需的最低理论保证,即,它讨论“在哪些条件下,我们可以停止担心和接受统计机器学习。 “一些亮点:大多数教科书都是为计划专门研究STAT/ML/DL的人编写的,应该接受术语。该备忘录适用于经验丰富的象征研究人员,他们听到了很多嗡嗡声,但仍然不确定和持怀疑态度。有关STAT/ML/DL的信息目前太分散或嘈杂而无法投资。此备忘录优先考虑紧凑性,并特别注意与象征性范式相互共鸣的概念。我希望这份备忘录能节省时间。它优先考虑一般数学建模,并且不讨论任何特定的函数近似器,例如神经网络(NNS),SVMS,决策树等。它可以对校正开放。将此备忘录视为与博客文章相似的内容,采用有关Arxiv的论文的形式。
translated by 谷歌翻译