我们通过为变压器嵌入的变异信息瓶颈常规剂开发变压器提出了VAE。我们将变压器编码器的嵌入空间形式化为混合概率分布,并使用贝叶斯非参数来推导非参数变化信息瓶颈(NVIB)来用于此类基于注意力的嵌入。非参数方法支持的混合成分数量可变数量,可捕获注意力支持的向量数量,而我们的非参数分布的交换性捕获了注意力的置换不变性。这使得NVIB能够将注意力访问的向量数量以及各个向量中的信息量进行正规化。通过将变压器编码器与NVIB进行正规注意,我们提出了一个非参数变异自动编码器(NVAE)。关于训练自然语言文本的NVAE的最初实验表明,诱导的嵌入空间具有VAE对于变压器的所需特性。
translated by 谷歌翻译
在深神经网络中量化预测性不确定性的流行方法通常涉及一组权重或模型,例如通过合并或蒙特卡罗辍学。这些技术通常必须产生开销,必须培训多种模型实例,或者不会产生非常多样化的预测。该调查旨在熟悉基于证据深度学习的概念的替代类模型的读者:对于不熟悉的数据,他们承认“他们不知道的内容”并返回到先前的信仰。此外,它们允许在单个模型中进行不确定性估计,并通过参数化分布分布来转发传递。该调查重新承认现有工作,重点是在分类设置中的实现。最后,我们调查了相同范例的应用到回归问题。我们还对现有的方法进行了反思,并与现有方法相比,并提供最大的核心理论成果,以便通知未来的研究。
translated by 谷歌翻译
当前独立于域的经典计划者需要问题域和实例作为输入的符号模型,从而导致知识采集瓶颈。同时,尽管深度学习在许多领域都取得了重大成功,但知识是在与符号系统(例如计划者)不兼容的亚符号表示中编码的。我们提出了Latplan,这是一种无监督的建筑,结合了深度学习和经典计划。只有一组未标记的图像对,显示了环境中允许的过渡子集(训练输入),Latplan学习了环境的完整命题PDDL动作模型。稍后,当给出代表初始状态和目标状态(计划输入)的一对图像时,Latplan在符号潜在空间中找到了目标状态的计划,并返回可视化的计划执行。我们使用6个计划域的基于图像的版本来评估LATPLAN:8个插头,15个式嘴,Blockworld,Sokoban和两个LightsOut的变体。
translated by 谷歌翻译
这项正在进行的工作旨在为统计学习提供统一的介绍,从诸如GMM和HMM等经典模型到现代神经网络(如VAE和扩散模型)缓慢地构建。如今,有许多互联网资源可以孤立地解释这一点或新的机器学习算法,但是它们并没有(也不能在如此简短的空间中)将这些算法彼此连接起来,或者与统计模型的经典文献相连现代算法出现了。同样明显缺乏的是一个单一的符号系统,尽管对那些已经熟悉材料的人(如这些帖子的作者)不满意,但对新手的入境造成了重大障碍。同样,我的目的是将各种模型(尽可能)吸收到一个用于推理和学习的框架上,表明(以及为什么)如何以最小的变化将一个模型更改为另一个模型(其中一些是新颖的,另一些是文献中的)。某些背景当然是必要的。我以为读者熟悉基本的多变量计算,概率和统计以及线性代数。这本书的目标当然不是​​完整性,而是从基本知识到过去十年中极强大的新模型的直线路径或多或少。然后,目标是补充而不是替换,诸如Bishop的\ emph {模式识别和机器学习}之类的综合文本,该文本现在已经15岁了。
translated by 谷歌翻译
近似复杂的概率密度是现代统计中的核心问题。在本文中,我们介绍了变分推理(VI)的概念,这是一种机器学习中的流行方法,该方法使用优化技术来估计复杂的概率密度。此属性允许VI汇聚速度比经典方法更快,例如Markov Chain Monte Carlo采样。概念上,VI通过选择一个概率密度函数,然后找到最接近实际概率密度的家庭 - 通常使用Kullback-Leibler(KL)发散作为优化度量。我们介绍了缩窄的证据,以促进近似的概率密度,我们审查了平均场变分推理背后的想法。最后,我们讨论VI对变分式自动编码器(VAE)和VAE-生成的对抗网络(VAE-GAN)的应用。用本文,我们的目标是解释VI的概念,并通过这种方法协助协助。
translated by 谷歌翻译
神经网络在许多科学学科中发挥着越来越大的作用,包括物理学。变形AutoEncoders(VAE)是能够表示在低维潜空间中的高维数据的基本信息,该神经网络具有概率解释。特别是所谓的编码器网络,VAE的第一部分,其将其输入到潜伏空间中的位置,另外在该位置的方差方面提供不确定性信息。在这项工作中,介绍了对AutoEncoder架构的扩展,渔民。在该架构中,借助于Fisher信息度量,不使用编码器中的附加信息信道生成潜在空间不确定性,而是从解码器导出。这种架构具有来自理论观点的优点,因为它提供了从模型的直接不确定性量化,并且还考虑不确定的交叉相关。我们可以通过实验表明,渔民生产比可比较的VAE更准确的数据重建,并且其学习性能也明显较好地缩放了潜伏空间尺寸的数量。
translated by 谷歌翻译
变异推理(VI)的核心原理是将计算复杂后概率密度计算的统计推断问题转换为可拖动的优化问题。该属性使VI比几种基于采样的技术更快。但是,传统的VI算法无法扩展到大型数据集,并且无法轻易推断出越野数据点,而无需重新运行优化过程。该领域的最新发展,例如随机,黑框和摊销VI,已帮助解决了这些问题。如今,生成的建模任务广泛利用摊销VI来实现其效率和可扩展性,因为它利用参数化函数来学习近似的后验密度参数。在本文中,我们回顾了各种VI技术的数学基础,以构成理解摊销VI的基础。此外,我们还概述了最近解决摊销VI问题的趋势,例如摊销差距,泛化问题,不一致的表示学习和后验崩溃。最后,我们分析了改善VI优化的替代差异度量。
translated by 谷歌翻译
The standard recurrent neural network language model (rnnlm) generates sentences one word at a time and does not work from an explicit global sentence representation. In this work, we introduce and study an rnn-based variational autoencoder generative model that incorporates distributed latent representations of entire sentences. This factorization allows it to explicitly model holistic properties of sentences such as style, topic, and high-level syntactic features. Samples from the prior over these sentence representations remarkably produce diverse and well-formed sentences through simple deterministic decoding. By examining paths through this latent space, we are able to generate coherent novel sentences that interpolate between known sentences. We present techniques for solving the difficult learning problem presented by this model, demonstrate its effectiveness in imputing missing words, explore many interesting properties of the model's latent sentence space, and present negative results on the use of the model in language modeling.
translated by 谷歌翻译
象征性的AI社区越来越多地试图在神经符号结构中接受机器学习,但由于文化障碍,仍在挣扎。为了打破障碍,这份相当有思想的个人备忘录试图解释和纠正统计,机器学习和深入学习的惯例,从局外人的角度进行深入学习。它提供了一个分步协议,用于设计一个机器学习系统,该系统满足符号AI社区认真对待所必需的最低理论保证,即,它讨论“在哪些条件下,我们可以停止担心和接受统计机器学习。 “一些亮点:大多数教科书都是为计划专门研究STAT/ML/DL的人编写的,应该接受术语。该备忘录适用于经验丰富的象征研究人员,他们听到了很多嗡嗡声,但仍然不确定和持怀疑态度。有关STAT/ML/DL的信息目前太分散或嘈杂而无法投资。此备忘录优先考虑紧凑性,并特别注意与象征性范式相互共鸣的概念。我希望这份备忘录能节省时间。它优先考虑一般数学建模,并且不讨论任何特定的函数近似器,例如神经网络(NNS),SVMS,决策树等。它可以对校正开放。将此备忘录视为与博客文章相似的内容,采用有关Arxiv的论文的形式。
translated by 谷歌翻译
We develop stochastic variational inference, a scalable algorithm for approximating posterior distributions. We develop this technique for a large class of probabilistic models and we demonstrate it with two probabilistic topic models, latent Dirichlet allocation and the hierarchical Dirichlet process topic model. Using stochastic variational inference, we analyze several large collections of documents: 300K articles from Nature, 1.8M articles from The New York Times, and 3.8M articles from Wikipedia. Stochastic inference can easily handle data sets of this size and outperforms traditional variational inference, which can only handle a smaller subset. (We also show that the Bayesian nonparametric topic model outperforms its parametric counterpart.) Stochastic variational inference lets us apply complex Bayesian models to massive data sets.
translated by 谷歌翻译
We describe latent Dirichlet allocation (LDA), a generative probabilistic model for collections of discrete data such as text corpora. LDA is a three-level hierarchical Bayesian model, in which each item of a collection is modeled as a finite mixture over an underlying set of topics. Each topic is, in turn, modeled as an infinite mixture over an underlying set of topic probabilities. In the context of text modeling, the topic probabilities provide an explicit representation of a document. We present efficient approximate inference techniques based on variational methods and an EM algorithm for empirical Bayes parameter estimation. We report results in document modeling, text classification, and collaborative filtering, comparing to a mixture of unigrams model and the probabilistic LSI model.
translated by 谷歌翻译
变异自动编码器(VAE)是最常用的无监督机器学习模型之一。但是,尽管对先前和后验的高斯分布的默认选择通常代表了数学方便的分布通常会导致竞争结果,但我们表明该参数化无法用潜在的超球体结构对数据进行建模。为了解决这个问题,我们建议使用von Mises-fisher(VMF)分布,从而导致超级潜在空间。通过一系列实验,我们展示了这种超球vae或$ \ mathcal {s} $ - vae如何更适合于用超球形结构捕获数据,同时胜过正常的,$ \ mathcal {n} $ - vae-,在其他数据类型的低维度中。http://github.com/nicola-decao/s-vae-tf和https://github.com/nicola-decao/nicola-decao/s-vae-pytorch
translated by 谷歌翻译
概率分布允许从业者发现数据中的隐藏结构,并构建模型,以使用有限的数据解决监督的学习问题。该报告的重点是变异自动编码器,这是一种学习大型复杂数据集概率分布的方法。该报告提供了对变异自动编码器的理论理解,并巩固了该领域的当前研究。该报告分为多个章节,第一章介绍了问题,描述了变异自动编码器并标识了该领域的关键研究方向。第2、3、4和5章深入研究了每个关键研究领域的细节。第6章总结了报告,并提出了未来工作的指示。具有机器学习基本思想但想了解机器学习研究中的一般主题的读者可以从报告中受益。该报告解释了有关学习概率分布的中心思想,人们为使这种危险做些什么,并介绍了有关当前如何应用深度学习的细节。该报告还为希望为这个子场做出贡献的人提供了温和的介绍。
translated by 谷歌翻译
Generative AI has matured to a point where large-scale models can generate text that seems indistinguishable from human-written text and remarkably photorealistic images. Automatically measuring how close the distribution of generated data is to the target real data distribution is a key step in diagnosing existing models and developing better models. We present MAUVE, a family of comparison measures between pairs of distributions such as those encountered in the generative modeling of text or images. These scores are statistical summaries of divergence frontiers capturing two types of errors in generative modeling. We explore four approaches to statistically estimate these scores: vector quantization, non-parametric estimation, classifier-based estimation, and parametric Gaussian approximations. We provide statistical bounds for the vector quantization approach. Empirically, we find that the proposed scores paired with a range of $f$-divergences and statistical estimation methods can quantify the gaps between the distributions of human-written text and those of modern neural language models by correlating with human judgments and identifying known properties of the generated texts. We conclude the paper by demonstrating its applications to other AI domains and discussing practical recommendations.
translated by 谷歌翻译
Transformers and variational autoencoders (VAE) have been extensively employed for symbolic (e.g., MIDI) domain music generation. While the former boast an impressive capability in modeling long sequences, the latter allow users to willingly exert control over different parts (e.g., bars) of the music to be generated. In this paper, we are interested in bringing the two together to construct a single model that exhibits both strengths. The task is split into two steps. First, we equip Transformer decoders with the ability to accept segment-level, time-varying conditions during sequence generation. Subsequently, we combine the developed and tested in-attention decoder with a Transformer encoder, and train the resulting MuseMorphose model with the VAE objective to achieve style transfer of long pop piano pieces, in which users can specify musical attributes including rhythmic intensity and polyphony (i.e., harmonic fullness) they desire, down to the bar level. Experiments show that MuseMorphose outperforms recurrent neural network (RNN) based baselines on numerous widely-used metrics for style transfer tasks.
translated by 谷歌翻译
随机过程提供了数学上优雅的方式模型复杂数据。从理论上讲,它们为可以编码广泛有趣的假设的功能类提供了灵活的先验。但是,实际上,难以通过优化或边缘化来有效推断,这一问题进一步加剧了大数据和高维输入空间。我们提出了一种新颖的变性自动编码器(VAE),称为先前的编码变量自动编码器($ \ pi $ vae)。 $ \ pi $ vae是有限的交换且Kolmogorov一致的,因此是一个连续的随机过程。我们使用$ \ pi $ vae学习功能类的低维嵌入。我们表明,我们的框架可以准确地学习表达功能类,例如高斯流程,也可以学习函数的属性以启用统计推断(例如log高斯过程的积分)。对于流行的任务,例如空间插值,$ \ pi $ vae在准确性和计算效率方面都达到了最先进的性能。也许最有用的是,我们证明了所学的低维独立分布的潜在空间表示提供了一种优雅,可扩展的方法,可以在概率编程语言(例如Stan)中对随机过程进行贝叶斯推断。
translated by 谷歌翻译
The success of machine learning algorithms generally depends on data representation, and we hypothesize that this is because different representations can entangle and hide more or less the different explanatory factors of variation behind the data. Although specific domain knowledge can be used to help design representations, learning with generic priors can also be used, and the quest for AI is motivating the design of more powerful representation-learning algorithms implementing such priors. This paper reviews recent work in the area of unsupervised feature learning and deep learning, covering advances in probabilistic models, auto-encoders, manifold learning, and deep networks. This motivates longer-term unanswered questions about the appropriate objectives for learning good representations, for computing representations (i.e., inference), and the geometrical connections between representation learning, density estimation and manifold learning.
translated by 谷歌翻译
A large amount of recent research has the far-reaching goal of finding training methods for deep neural networks that can serve as alternatives to backpropagation (BP). A prominent example is predictive coding (PC), which is a neuroscience-inspired method that performs inference on hierarchical Gaussian generative models. These methods, however, fail to keep up with modern neural networks, as they are unable to replicate the dynamics of complex layers and activation functions. In this work, we solve this problem by generalizing PC to arbitrary probability distributions, enabling the training of architectures, such as transformers, that are hard to approximate with only Gaussian assumptions. We perform three experimental analyses. First, we study the gap between our method and the standard formulation of PC on multiple toy examples. Second, we test the reconstruction quality on variational autoencoders, where our method reaches the same reconstruction quality as BP. Third, we show that our method allows us to train transformer networks and achieve a performance comparable with BP on conditional language models. More broadly, this method allows neuroscience-inspired learning to be applied to multiple domains, since the internal distributions can be flexibly adapted to the data, tasks, and architectures used.
translated by 谷歌翻译
福利值广泛用作模型不可知的解释框架,以解释复杂的预测机器学习模型。福利值具有理想的理论特性和声音数学基础。精确的福芙值估计依赖数据依赖于所有特征组合之间的依赖性的准确建模。在本文中,我们使用具有任意调节(VAEAC)的变形AutoEncoder来同时建模所有特征依赖性。我们通过全面的仿真研究证明了VAEAC对于连续和混合依赖特征的各种环境来说,VAEAC优于最先进的方法。最后,我们将VAEAC应用于从UCI机器学习存储库中的鲍鱼数据集。
translated by 谷歌翻译
矢量量化变量自动编码器(VQ-VAE)是基于数据的离散潜在表示的生成模型,其中输入映射到有限的学习嵌入式集合。要生成新样品,必须对离散状态进行自动介绍的先验分布。分别地。这一先验通常非常复杂,并导致生成缓慢。在这项工作中,我们提出了一个新模型,以同时训练先验和编码器/解码器网络。我们在连续编码的向量和非信息性先验分布之间建立扩散桥。然后将潜在离散状态作为这些连续向量的随机函数。我们表明,我们的模型与迷你imagenet和Cifar数据集的自动回归先验具有竞争力,并且在优化和采样方面都有效。我们的框架还扩展了标准VQ-VAE,并可以启用端到端培训。
translated by 谷歌翻译