现有的远处监督的关系提取器通常依靠嘈杂的数据进行模型培训和评估,这可能导致垃圾堆放系统。为了减轻问题,我们研究了小型清洁数据集是否可以帮助提高远距离监督模型的质量。我们表明,除了对模型进行更具说服力的评估外,一个小的清洁数据集还可以帮助我们构建更强大的Denoising模型。具体而言,我们提出了一个基于影响函数的清洁实例选择的新标准。它收集了样本级别的证据,以识别良好实例(这比损失级别的证据更具信息性)。我们还提出了一种教师实习机制,以控制自举套件时中间结果的纯度。整个方法是模型不合时宜的,并且在denoising Real(NYT)和合成噪声数据集上都表现出强烈的性能。
translated by 谷歌翻译
我们提出了一种简单而有效的自我训练方法,称为Stad,用于低资源关系提取。该方法首先根据教师模型所预测的概率将自动注释的实例分为两组:自信实例和不确定实例。与大多数以前的研究相反,主要的研究主要仅利用自信实例进行自我训练,我们利用了不确定的实例。为此,我们提出了一种从不确定实例中识别模棱两可但有用的实例的方法,然后将关系分为每个模棱两可的实例中的候选标签集和负标签集。接下来,我们建议对模棱两可的实例的负标签集和对自信实例的积极培训方法提出一种设定的培训方法。最后,提出了一种联合培训方法来在所有数据上构建最终关系提取系统。在两个广泛使用的数据集SEMEVAL2010任务8上进行的实验结果和低资源设置的重新攻击表明,这种新的自我训练方法确实在与几个竞争性自我训练系统相比时确实取得了显着和一致的改进。代码可在https://github.com/jjyunlp/stad上公开获取
translated by 谷歌翻译
关系提取(RE)是自然语言处理的基本任务。RE试图通过识别文本中的实体对之间的关系信息来将原始的,非结构化的文本转变为结构化知识。RE有许多用途,例如知识图完成,文本摘要,提问和搜索查询。RE方法的历史可以分为四个阶段:基于模式的RE,基于统计的RE,基于神经的RE和大型语言模型的RE。这项调查始于对RE的早期阶段的一些示例性作品的概述,突出了局限性和缺点,以使进度相关。接下来,我们回顾流行的基准测试,并严格检查用于评估RE性能的指标。然后,我们讨论遥远的监督,这是塑造现代RE方法发展的范式。最后,我们回顾了重点是降级和培训方法的最新工作。
translated by 谷歌翻译
命名实体识别(NER)是自然语言处理中的重要任务。但是,传统的监督NER需要大规模注释的数据集。提出了远处的监督以减轻对数据集的巨大需求,但是以这种方式构建的数据集非常嘈杂,并且存在严重的未标记实体问题。交叉熵(CE)损耗函数对未标记的数据高度敏感,从而导致严重的性能降解。作为替代方案,我们提出了一种称为NRCES的新损失函数,以应对此问题。Sigmoid项用于减轻噪声的负面影响。此外,我们根据样品和训练过程平衡模型的收敛性和噪声耐受性。关于合成和现实世界数据集的实验表明,在严重的未标记实体问题的情况下,我们的方法表现出强大的鲁棒性,从而实现了现实世界数据集的新最新技术。
translated by 谷歌翻译
Distantly-Supervised Named Entity Recognition (DS-NER) effectively alleviates the data scarcity problem in NER by automatically generating training samples. Unfortunately, the distant supervision may induce noisy labels, thus undermining the robustness of the learned models and restricting the practical application. To relieve this problem, recent works adopt self-training teacher-student frameworks to gradually refine the training labels and improve the generalization ability of NER models. However, we argue that the performance of the current self-training frameworks for DS-NER is severely underestimated by their plain designs, including both inadequate student learning and coarse-grained teacher updating. Therefore, in this paper, we make the first attempt to alleviate these issues by proposing: (1) adaptive teacher learning comprised of joint training of two teacher-student networks and considering both consistent and inconsistent predictions between two teachers, thus promoting comprehensive student learning. (2) fine-grained student ensemble that updates each fragment of the teacher model with a temporal moving average of the corresponding fragment of the student, which enhances consistent predictions on each model fragment against noise. To verify the effectiveness of our proposed method, we conduct experiments on four DS-NER datasets. The experimental results demonstrate that our method significantly surpasses previous SOTA methods.
translated by 谷歌翻译
缺乏标记数据是关系提取的主要障碍。通过将未标记的样本作为额外培训数据注释,已经证明,半监督联系提取(SSRE)已被证明是一个有希望的方法。沿着这条线几乎所有先前的研究采用多种模型来使注释通过从这些模型中获取交叉路口集的预测结果来更加可靠。然而,差异集包含有关未标记数据的丰富信息,并通过事先研究忽略了忽视。在本文中,我们建议不仅从共识中学习,而且还要学习SSRE中不同模型之间的分歧。为此,我们开发了一种简单且一般的多教师蒸馏(MTD)框架,可以轻松集成到任何现有的SSRE方法中。具体来说,我们首先让教师对应多个模型,并在SSRE方法中选择最后一次迭代的交叉点集中的样本,以便像往常一样增加标记的数据。然后,我们将类分布转移为差异设置为软标签以指导学生。我们最后使用训练有素的学生模型进行预测。两个公共数据集上的实验结果表明,我们的框架显着促进了基础SSRE方法的性能,具有相当低的计算成本。
translated by 谷歌翻译
如今,知识图(KGS)一直在AI相关的应用中发挥关键作用。尽管尺寸大,但现有的公斤远非完全和全面。为了不断丰富KG,通常使用自动知识结构和更新机制,这不可避免地带来充足的噪音。然而,大多数现有知识图形嵌入(KGE)方法假设KGS中的所有三重事实都是正确的,并且在不考虑噪声和知识冲突的情况下将实体和关系投入到低维空间。这将导致kgs的低质量和不可靠的表示。为此,本文提出了一般的多任务加固学习框架,这可以大大缓解嘈杂的数据问题。在我们的框架中,我们利用强化学习来选择高质量的知识三分石,同时过滤出嘈杂的。此外,为了充分利用语义类似的关系之间的相关性,在具有多任务学习的集体方式中训练了类似关系的三重选择过程。此外,我们扩展了流行的KGE Models Transe,Distmult,与所提出的框架耦合和旋转。最后,实验验证表明,我们的方法能够增强现有的KGE模型,可以在嘈杂的情景中提供更强大的KGS表示。
translated by 谷歌翻译
Label noise is ubiquitous in various machine learning scenarios such as self-labeling with model predictions and erroneous data annotation. Many existing approaches are based on heuristics such as sample losses, which might not be flexible enough to achieve optimal solutions. Meta learning based methods address this issue by learning a data selection function, but can be hard to optimize. In light of these pros and cons, we propose Selection-Enhanced Noisy label Training (SENT) that does not rely on meta learning while having the flexibility of being data-driven. SENT transfers the noise distribution to a clean set and trains a model to distinguish noisy labels from clean ones using model-based features. Empirically, on a wide range of tasks including text classification and speech recognition, SENT improves performance over strong baselines under the settings of self-training and label corruption.
translated by 谷歌翻译
为了减少人际关系提取(RE)任务的注释,提出了遥远的监督方法,同时却在低性能方面挣扎。在这项工作中,我们提出了一个新颖的DSRE-NLI框架,该框架既考虑了现有知识库的遥远监督,又考虑了对其他任务的预读语言模型的间接监督。 DSRE-NLI通过半自动关系语言(SARV)机制为现成的自然语言推理(NLI)发动机充满电,以提供间接的监督并进一步巩固远处注释以使多型分类重新模型受益。基于NLI的间接监督仅获取一个从人类的关系模板作为每个关系的语义通用模板,然后模板集由高质量的文本模式富集,从遥远的注释的语料库中自动开采。通过两种简单有效的数据整合策略,培训数据的质量得到了显着提高。广泛的实验表明,所提出的框架可显着改善远距离监督的RE基准数据集上的SOTA性能(最高为F1的7.73%)。
translated by 谷歌翻译
Information Extraction (IE) aims to extract structured information from heterogeneous sources. IE from natural language texts include sub-tasks such as Named Entity Recognition (NER), Relation Extraction (RE), and Event Extraction (EE). Most IE systems require comprehensive understandings of sentence structure, implied semantics, and domain knowledge to perform well; thus, IE tasks always need adequate external resources and annotations. However, it takes time and effort to obtain more human annotations. Low-Resource Information Extraction (LRIE) strives to use unsupervised data, reducing the required resources and human annotation. In practice, existing systems either utilize self-training schemes to generate pseudo labels that will cause the gradual drift problem, or leverage consistency regularization methods which inevitably possess confirmation bias. To alleviate confirmation bias due to the lack of feedback loops in existing LRIE learning paradigms, we develop a Gradient Imitation Reinforcement Learning (GIRL) method to encourage pseudo-labeled data to imitate the gradient descent direction on labeled data, which can force pseudo-labeled data to achieve better optimization capabilities similar to labeled data. Based on how well the pseudo-labeled data imitates the instructive gradient descent direction obtained from labeled data, we design a reward to quantify the imitation process and bootstrap the optimization capability of pseudo-labeled data through trial and error. In addition to learning paradigms, GIRL is not limited to specific sub-tasks, and we leverage GIRL to solve all IE sub-tasks (named entity recognition, relation extraction, and event extraction) in low-resource settings (semi-supervised IE and few-shot IE).
translated by 谷歌翻译
除了使用硬标签的标准监督学习外,通常在许多监督学习设置中使用辅助损失来改善模型的概括。例如,知识蒸馏增加了第二个教师模仿模型训练的损失,在该培训中,教师可能是一个验证的模型,可以输出比标签更丰富的分布。同样,在标记数据有限的设置中,弱标记信息以标签函数的形式使用。此处引入辅助损失来对抗标签函数,这些功能可能是基于嘈杂的规则的真实标签近似值。我们解决了学习以原则性方式结合这些损失的问题。我们介绍AMAL,该AMAL使用元学习在验证度量上学习实例特定的权重,以实现损失的最佳混合。在许多知识蒸馏和规则降解域中进行的实验表明,Amal在这些领域中对竞争基准的增长可显着。我们通过经验分析我们的方法,并分享有关其提供性能提升的机制的见解。
translated by 谷歌翻译
Open Relation Extraction (OpenRE) aims to discover novel relations from open domains. Previous OpenRE methods mainly suffer from two problems: (1) Insufficient capacity to discriminate between known and novel relations. When extending conventional test settings to a more general setting where test data might also come from seen classes, existing approaches have a significant performance decline. (2) Secondary labeling must be performed before practical application. Existing methods cannot label human-readable and meaningful types for novel relations, which is urgently required by the downstream tasks. To address these issues, we propose the Active Relation Discovery (ARD) framework, which utilizes relational outlier detection for discriminating known and novel relations and involves active learning for labeling novel relations. Extensive experiments on three real-world datasets show that ARD significantly outperforms previous state-of-the-art methods on both conventional and our proposed general OpenRE settings. The source code and datasets will be available for reproducibility.
translated by 谷歌翻译
我们提出了一个零射门学习关系分类(ZSLRC)框架,通过其识别训练数据中不存在的新颖关系的能力来提高最先进的框架。零射击学习方法模仿人类学习和识别新概念的方式,没有先前的知识。为此,ZSLRC使用修改的高级原型网络来利用加权侧(辅助)信息。 ZSLRC的侧面信息是由关键字,名称实体的高度和标签及其同义词构建的。 ZSLRC还包括一个自动高义的提取框架,可直接从Web获取各种名称实体的高型。 ZSLRC提高了最先进的少量学习关系分类方法,依赖于标记的培训数据,因此即使在现实世界方案中也适用于某些关系对相应标记的培训示例。我们在两种公共数据集(NYT和NEREREL)上使用广泛的实验显示结果,并显示ZSLRC显着优于最先进的方法对监督学习,少量学习和零射击学习任务。我们的实验结果还展示了我们所提出的模型的有效性和稳健性。
translated by 谷歌翻译
尽管与专家标签相比,众包平台通常用于收集用于培训机器学习模型的数据集,尽管标签不正确。有两种常见的策略来管理这种噪音的影响。第一个涉及汇总冗余注释,但以较少的例子为代价。其次,先前的作品还考虑使用整个注释预算来标记尽可能多的示例,然后应用Denoising算法来隐式清洁数据集。我们找到了一个中间立场,并提出了一种方法,该方法保留了一小部分注释,以明确清理高度可能的错误样本以优化注释过程。特别是,我们分配了标签预算的很大一部分,以形成用于训练模型的初始数据集。然后,该模型用于确定最有可能是不正确的特定示例,我们将剩余预算用于重新标记。在三个模型变化和四个自然语言处理任务上进行的实验表明,当分配相同的有限注释预算时,旨在处理嘈杂标签的标签聚合和高级denoising方法均优于标签聚合或匹配。
translated by 谷歌翻译
Data Augmentation (DA) is frequently used to automatically provide additional training data without extra human annotation. However, data augmentation may introduce noisy data that impairs training. To guarantee the quality of augmented data, existing methods either assume no noise exists in the augmented data and adopt consistency training or use simple heuristics such as training loss and diversity constraints to filter out ``noisy'' data. However, those filtered examples may still contain useful information, and dropping them completely causes loss of supervision signals. In this paper, based on the assumption that the original dataset is cleaner than the augmented data, we propose an on-the-fly denoising technique for data augmentation that learns from soft augmented labels provided by an organic teacher model trained on the cleaner original data. A simple self-regularization module is applied to force the model prediction to be consistent across two distinct dropouts to further prevent overfitting on noisy labels. Our method can be applied to augmentation techniques in general and can consistently improve the performance on both text classification and question-answering tasks.
translated by 谷歌翻译
Positive-Unlabeled (PU) learning aims to learn a model with rare positive samples and abundant unlabeled samples. Compared with classical binary classification, the task of PU learning is much more challenging due to the existence of many incompletely-annotated data instances. Since only part of the most confident positive samples are available and evidence is not enough to categorize the rest samples, many of these unlabeled data may also be the positive samples. Research on this topic is particularly useful and essential to many real-world tasks which demand very expensive labelling cost. For example, the recognition tasks in disease diagnosis, recommendation system and satellite image recognition may only have few positive samples that can be annotated by the experts. These methods mainly omit the intrinsic hardness of some unlabeled data, which can result in sub-optimal performance as a consequence of fitting the easy noisy data and not sufficiently utilizing the hard data. In this paper, we focus on improving the commonly-used nnPU with a novel training pipeline. We highlight the intrinsic difference of hardness of samples in the dataset and the proper learning strategies for easy and hard data. By considering this fact, we propose first splitting the unlabeled dataset with an early-stop strategy. The samples that have inconsistent predictions between the temporary and base model are considered as hard samples. Then the model utilizes a noise-tolerant Jensen-Shannon divergence loss for easy data; and a dual-source consistency regularization for hard data which includes a cross-consistency between student and base model for low-level features and self-consistency for high-level features and predictions, respectively.
translated by 谷歌翻译
样品选择是减轻标签噪声在鲁棒学习中的影响的有效策略。典型的策略通常应用小损失标准来识别干净的样品。但是,这些样本位于决策边界周围,通常会与嘈杂的例子纠缠在一起,这将被此标准丢弃,从而导致概括性能的严重退化。在本文中,我们提出了一种新颖的选择策略,\ textbf {s} elf- \ textbf {f} il \ textbf {t} ering(sft),它利用历史预测中嘈杂的示例的波动来过滤它们,可以过滤它们,这可以是可以过滤的。避免在边界示例中的小损失标准的选择偏置。具体来说,我们介绍了一个存储库模块,该模块存储了每个示例的历史预测,并动态更新以支持随后的学习迭代的选择。此外,为了减少SFT样本选择偏置的累积误差,我们设计了一个正规化术语来惩罚自信的输出分布。通过通过此术语增加错误分类类别的重量,损失函数在轻度条件下标记噪声是可靠的。我们对具有变化噪声类型的三个基准测试并实现了新的最先进的实验。消融研究和进一步分析验证了SFT在健壮学习中选择样本的优点。
translated by 谷歌翻译
本文解决了在水模型部署民主化中采用了机器学习的一些挑战。第一个挑战是减少了在主动学习的帮助下减少了标签努力(因此关注数据质量),模型推断与Oracle之间的反馈循环:如在保险中,未标记的数据通常丰富,主动学习可能会成为一个重要的资产减少标签成本。为此目的,本文在研究其对合成和真实数据集的实证影响之前,阐述了各种古典主动学习方法。保险中的另一个关键挑战是模型推论中的公平问题。我们将在此主动学习框架中介绍和整合一个用于多级任务的后处理公平,以解决这两个问题。最后对不公平数据集的数值实验突出显示所提出的设置在模型精度和公平性之间存在良好的折衷。
translated by 谷歌翻译
Large-scale supervised datasets are crucial to train convolutional neural networks (CNNs) for various computer vision problems. However, obtaining a massive amount of well-labeled data is usually very expensive and time consuming. In this paper, we introduce a general framework to train CNNs with only a limited number of clean labels and millions of easily obtained noisy labels. We model the relationships between images, class labels and label noises with a probabilistic graphical model and further integrate it into an end-to-end deep learning system. To demonstrate the effectiveness of our approach, we collect a large-scale real-world clothing classification dataset with both noisy and clean labels. Experiments on this dataset indicate that our approach can better correct the noisy labels and improves the performance of trained CNNs.
translated by 谷歌翻译
As an important data selection schema, active learning emerges as the essential component when iterating an Artificial Intelligence (AI) model. It becomes even more critical given the dominance of deep neural network based models, which are composed of a large number of parameters and data hungry, in application. Despite its indispensable role for developing AI models, research on active learning is not as intensive as other research directions. In this paper, we present a review of active learning through deep active learning approaches from the following perspectives: 1) technical advancements in active learning, 2) applications of active learning in computer vision, 3) industrial systems leveraging or with potential to leverage active learning for data iteration, 4) current limitations and future research directions. We expect this paper to clarify the significance of active learning in a modern AI model manufacturing process and to bring additional research attention to active learning. By addressing data automation challenges and coping with automated machine learning systems, active learning will facilitate democratization of AI technologies by boosting model production at scale.
translated by 谷歌翻译