缺乏标记数据是关系提取的主要障碍。通过将未标记的样本作为额外培训数据注释,已经证明,半监督联系提取(SSRE)已被证明是一个有希望的方法。沿着这条线几乎所有先前的研究采用多种模型来使注释通过从这些模型中获取交叉路口集的预测结果来更加可靠。然而,差异集包含有关未标记数据的丰富信息,并通过事先研究忽略了忽视。在本文中,我们建议不仅从共识中学习,而且还要学习SSRE中不同模型之间的分歧。为此,我们开发了一种简单且一般的多教师蒸馏(MTD)框架,可以轻松集成到任何现有的SSRE方法中。具体来说,我们首先让教师对应多个模型,并在SSRE方法中选择最后一次迭代的交叉点集中的样本,以便像往常一样增加标记的数据。然后,我们将类分布转移为差异设置为软标签以指导学生。我们最后使用训练有素的学生模型进行预测。两个公共数据集上的实验结果表明,我们的框架显着促进了基础SSRE方法的性能,具有相当低的计算成本。
translated by 谷歌翻译
Distantly-Supervised Named Entity Recognition (DS-NER) effectively alleviates the data scarcity problem in NER by automatically generating training samples. Unfortunately, the distant supervision may induce noisy labels, thus undermining the robustness of the learned models and restricting the practical application. To relieve this problem, recent works adopt self-training teacher-student frameworks to gradually refine the training labels and improve the generalization ability of NER models. However, we argue that the performance of the current self-training frameworks for DS-NER is severely underestimated by their plain designs, including both inadequate student learning and coarse-grained teacher updating. Therefore, in this paper, we make the first attempt to alleviate these issues by proposing: (1) adaptive teacher learning comprised of joint training of two teacher-student networks and considering both consistent and inconsistent predictions between two teachers, thus promoting comprehensive student learning. (2) fine-grained student ensemble that updates each fragment of the teacher model with a temporal moving average of the corresponding fragment of the student, which enhances consistent predictions on each model fragment against noise. To verify the effectiveness of our proposed method, we conduct experiments on four DS-NER datasets. The experimental results demonstrate that our method significantly surpasses previous SOTA methods.
translated by 谷歌翻译
由于许多微调预先训练的语言模型〜(PLMS)具有有希望的性能,因此慷慨地释放,研究了重用这些模型的更好方法至关重要,因为它可以大大降低再培训计算成本和潜在的环境副作用。在本文中,我们探索了一种小型模型重用范式,知识合并〜(ka)。如果没有人为注释,KA旨在将来自不同教师的知识合并到一个专门从事不同的分类问题中的知识,进入多功能的学生模型。实现这一目标,我们设计了模型不确定感知知识合并〜(Muka)框架,其使用Monte-Carlo辍学来识别潜在的足够教师,以估计金色监督指导学生。实验结果表明,Muka在基准数据集上实现了对基准的基本改进。进一步的分析表明,Muka可以通过多个教师模型,异构教师,甚至交叉数据集教师概括很好的复杂设置。
translated by 谷歌翻译
我们提出了一种简单而有效的自我训练方法,称为Stad,用于低资源关系提取。该方法首先根据教师模型所预测的概率将自动注释的实例分为两组:自信实例和不确定实例。与大多数以前的研究相反,主要的研究主要仅利用自信实例进行自我训练,我们利用了不确定的实例。为此,我们提出了一种从不确定实例中识别模棱两可但有用的实例的方法,然后将关系分为每个模棱两可的实例中的候选标签集和负标签集。接下来,我们建议对模棱两可的实例的负标签集和对自信实例的积极培训方法提出一种设定的培训方法。最后,提出了一种联合培训方法来在所有数据上构建最终关系提取系统。在两个广泛使用的数据集SEMEVAL2010任务8上进行的实验结果和低资源设置的重新攻击表明,这种新的自我训练方法确实在与几个竞争性自我训练系统相比时确实取得了显着和一致的改进。代码可在https://github.com/jjyunlp/stad上公开获取
translated by 谷歌翻译
To improve the performance of the dual-encoder retriever, one effective approach is knowledge distillation from the cross-encoder ranker. Existing works construct the candidate passages following the supervised learning setting where a query is paired with a positive passage and a batch of negatives. However, through empirical observation, we find that even the hard negatives from advanced methods are still too trivial for the teacher to distinguish, preventing the teacher from transferring abundant dark knowledge to the student through its soft label. To alleviate this issue, we propose ADAM, a knowledge distillation framework that can better transfer the dark knowledge held in the teacher with Adaptive Dark exAMples. Different from previous works that only rely on one positive and hard negatives as candidate passages, we create dark examples that all have moderate relevance to the query through mixing-up and masking in discrete space. Furthermore, as the quality of knowledge held in different training instances varies as measured by the teacher's confidence score, we propose a self-paced distillation strategy that adaptively concentrates on a subset of high-quality instances to conduct our dark-example-based knowledge distillation to help the student learn better. We conduct experiments on two widely-used benchmarks and verify the effectiveness of our method.
translated by 谷歌翻译
除了使用硬标签的标准监督学习外,通常在许多监督学习设置中使用辅助损失来改善模型的概括。例如,知识蒸馏增加了第二个教师模仿模型训练的损失,在该培训中,教师可能是一个验证的模型,可以输出比标签更丰富的分布。同样,在标记数据有限的设置中,弱标记信息以标签函数的形式使用。此处引入辅助损失来对抗标签函数,这些功能可能是基于嘈杂的规则的真实标签近似值。我们解决了学习以原则性方式结合这些损失的问题。我们介绍AMAL,该AMAL使用元学习在验证度量上学习实例特定的权重,以实现损失的最佳混合。在许多知识蒸馏和规则降解域中进行的实验表明,Amal在这些领域中对竞争基准的增长可显着。我们通过经验分析我们的方法,并分享有关其提供性能提升的机制的见解。
translated by 谷歌翻译
尽管深层模型在医学图像分割中表现出了有希望的性能,但它们在很大程度上依赖大量宣布的数据,这很难访问,尤其是在临床实践中。另一方面,高准确的深层模型通常有大型模型尺寸,从而限制了它们在实际情况下的工作。在这项工作中,我们提出了一个新颖的不对称联合教师框架ACT-NET,以减轻半监督知识蒸馏的昂贵注释和计算成本的负担。我们通过共同教师网络推进教师学习的学习,以通过交替的学生和教师角色来促进从大型模型到小模型的不对称知识蒸馏,从而获得了临床就业的微小但准确的模型。为了验证我们的行动网络的有效性,我们在实验中采用了ACDC数据集进行心脏子结构分段。广泛的实验结果表明,ACT-NET的表现优于其他知识蒸馏方法,并实现无损分割性能,参数少250倍。
translated by 谷歌翻译
在多种方式知识蒸馏研究的背景下,现有方法主要集中在唯一的学习教师最终产出问题。因此,教师网络与学生网络之间存在深处。有必要强制学生网络来学习教师网络的模态关系信息。为了有效利用从教师转移到学生的知识,采用了一种新的模型关系蒸馏范式,通过建模不同的模态之间的关系信息,即学习教师模级克矩阵。
translated by 谷歌翻译
场景图生成(SGG)任务旨在在给定图像中检测所有对象及其成对的视觉关系。尽管SGG在过去几年中取得了显着的进展,但几乎所有现有的SGG模型都遵循相同的训练范式:他们将SGG中的对象和谓词分类视为单标签分类问题,而地面真实性是一个hot目标。标签。但是,这种普遍的训练范式忽略了当前SGG数据集的两个特征:1)对于正样本,某些特定的主题对象实例可能具有多个合理的谓词。 2)对于负样本,有许多缺失的注释。不管这两个特征如何,SGG模型都很容易被混淆并做出错误的预测。为此,我们为无偏SGG提出了一种新颖的模型不合命相的标签语义知识蒸馏(LS-KD)。具体而言,LS-KD通过将预测的标签语义分布(LSD)与其原始的单热目标标签融合来动态生成每个主题对象实例的软标签。 LSD反映了此实例和多个谓词类别之间的相关性。同时,我们提出了两种不同的策略来预测LSD:迭代自我KD和同步自我KD。大量的消融和对三项SGG任务的结果证明了我们所提出的LS-KD的优势和普遍性,这些LS-KD可以始终如一地实现不同谓词类别之间的不错的权衡绩效。
translated by 谷歌翻译
Zero-shot cross-lingual named entity recognition (NER) aims at transferring knowledge from annotated and rich-resource data in source languages to unlabeled and lean-resource data in target languages. Existing mainstream methods based on the teacher-student distillation framework ignore the rich and complementary information lying in the intermediate layers of pre-trained language models, and domain-invariant information is easily lost during transfer. In this study, a mixture of short-channel distillers (MSD) method is proposed to fully interact the rich hierarchical information in the teacher model and to transfer knowledge to the student model sufficiently and efficiently. Concretely, a multi-channel distillation framework is designed for sufficient information transfer by aggregating multiple distillers as a mixture. Besides, an unsupervised method adopting parallel domain adaptation is proposed to shorten the channels between the teacher and student models to preserve domain-invariant features. Experiments on four datasets across nine languages demonstrate that the proposed method achieves new state-of-the-art performance on zero-shot cross-lingual NER and shows great generalization and compatibility across languages and fields.
translated by 谷歌翻译
最初引入了知识蒸馏,以利用来自单一教师模型的额外监督为学生模型培训。为了提高学生表现,最近的一些变体试图利用多个教师利用不同的知识来源。然而,现有研究主要通过对多种教师预测的平均或将它们与其他无标签策略相结合,将知识集成在多种来源中,可能在可能存在低质量的教师预测存在中误导学生。为了解决这个问题,我们提出了信心感知的多教师知识蒸馏(CA-MKD),该知识蒸馏(CA-MKD)在地面真理标签的帮助下,适用于每个教师预测的样本明智的可靠性,与那些接近单热的教师预测标签分配了大量的重量。此外,CA-MKD包含中间层,以进一步提高学生表现。广泛的实验表明,我们的CA-MKD始终如一地优于各种教师学生架构的所有最先进的方法。
translated by 谷歌翻译
Knowledge distillation is often used to transfer knowledge from a strong teacher model to a relatively weak student model. Traditional knowledge distillation methods include response-based methods and feature-based methods. Response-based methods are used the most widely but suffer from lower upper limit of model performance, while feature-based methods have constraints on the vocabularies and tokenizers. In this paper, we propose a tokenizer-free method liberal feature-based distillation (LEAD). LEAD aligns the distribution between teacher model and student model, which is effective, extendable, portable and has no requirements on vocabularies, tokenizer, or model architecture. Extensive experiments show the effectiveness of LEAD on several widely-used benchmarks, including MS MARCO Passage, TREC Passage 19, TREC Passage 20, MS MARCO Document, TREC Document 19 and TREC Document 20.
translated by 谷歌翻译
Knowledge distillation (KD) has been actively studied for image classification tasks in deep learning, aiming to improve the performance of a student based on the knowledge from a teacher. However, applying KD in image regression with a scalar response variable has been rarely studied, and there exists no KD method applicable to both classification and regression tasks yet. Moreover, existing KD methods often require a practitioner to carefully select or adjust the teacher and student architectures, making these methods less flexible in practice. To address the above problems in a unified way, we propose a comprehensive KD framework based on cGANs, termed cGAN-KD. Fundamentally different from existing KD methods, cGAN-KD distills and transfers knowledge from a teacher model to a student model via cGAN-generated samples. This novel mechanism makes cGAN-KD suitable for both classification and regression tasks, compatible with other KD methods, and insensitive to the teacher and student architectures. An error bound for a student model trained in the cGAN-KD framework is derived in this work, providing a theory for why cGAN-KD is effective as well as guiding the practical implementation of cGAN-KD. Extensive experiments on CIFAR-100 and ImageNet-100 show that we can combine state of the art KD methods with the cGAN-KD framework to yield a new state of the art. Moreover, experiments on Steering Angle and UTKFace demonstrate the effectiveness of cGAN-KD in image regression tasks, where existing KD methods are inapplicable.
translated by 谷歌翻译
由于学术和工业领域的异质图无处不在,研究人员最近提出了许多异质图神经网络(HGNN)。在本文中,我们不再采用更强大的HGNN模型,而是有兴趣设计一个多功能的插件模块,该模块解释了从预先训练的HGNN中提取的关系知识。据我们所知,我们是第一个在异质图上提出高阶(雇用)知识蒸馏框架的人,无论HGNN的模型体系结构如何,它都可以显着提高预测性能。具体而言,我们的雇用框架最初执行一阶节点级知识蒸馏,该蒸馏曲线及其预测逻辑编码了老师HGNN的语义。同时,二阶关系级知识蒸馏模仿了教师HGNN生成的不同类型的节点嵌入之间的关系相关性。在各种流行的HGNN模型和三个现实世界的异质图上进行了广泛的实验表明,我们的方法获得了一致且相当大的性能增强,证明了其有效性和泛化能力。
translated by 谷歌翻译
机器学习中的知识蒸馏是将知识从名为教师的大型模型转移到一个名为“学生”的较小模型的过程。知识蒸馏是将大型网络(教师)压缩到较小网络(学生)的技术之一,该网络可以部署在手机等小型设备中。当教师和学生之间的网络规模差距增加时,学生网络的表现就会下降。为了解决这个问题,在教师模型和名为助教模型的学生模型之间采用了中间模型,这反过来弥补了教师与学生之间的差距。在这项研究中,我们已经表明,使用多个助教模型,可以进一步改进学生模型(较小的模型)。我们使用加权集合学习将这些多个助教模型组合在一起,我们使用了差异评估优化算法来生成权重值。
translated by 谷歌翻译
Information Extraction (IE) aims to extract structured information from heterogeneous sources. IE from natural language texts include sub-tasks such as Named Entity Recognition (NER), Relation Extraction (RE), and Event Extraction (EE). Most IE systems require comprehensive understandings of sentence structure, implied semantics, and domain knowledge to perform well; thus, IE tasks always need adequate external resources and annotations. However, it takes time and effort to obtain more human annotations. Low-Resource Information Extraction (LRIE) strives to use unsupervised data, reducing the required resources and human annotation. In practice, existing systems either utilize self-training schemes to generate pseudo labels that will cause the gradual drift problem, or leverage consistency regularization methods which inevitably possess confirmation bias. To alleviate confirmation bias due to the lack of feedback loops in existing LRIE learning paradigms, we develop a Gradient Imitation Reinforcement Learning (GIRL) method to encourage pseudo-labeled data to imitate the gradient descent direction on labeled data, which can force pseudo-labeled data to achieve better optimization capabilities similar to labeled data. Based on how well the pseudo-labeled data imitates the instructive gradient descent direction obtained from labeled data, we design a reward to quantify the imitation process and bootstrap the optimization capability of pseudo-labeled data through trial and error. In addition to learning paradigms, GIRL is not limited to specific sub-tasks, and we leverage GIRL to solve all IE sub-tasks (named entity recognition, relation extraction, and event extraction) in low-resource settings (semi-supervised IE and few-shot IE).
translated by 谷歌翻译
尽管配备的远景和语言预处理(VLP)在过去两年中取得了显着的进展,但它遭受了重大缺点:VLP型号不断增加的尺寸限制了其部署到现实世界的搜索场景(高潜伏期是不可接受的)。为了减轻此问题,我们提出了一种新颖的插件动态对比度蒸馏(DCD)框架,以压缩ITR任务的大型VLP模型。从技术上讲,我们面临以下两个挑战:1)由于GPU内存有限,在处理交叉模式融合功能期间优化了太多的负样本,因此很难直接应用于跨模式任务,因此很难直接应用于跨模式任务。 。 2)从不同的硬样品中静态优化学生网络的效率效率低下,这些样本对蒸馏学习和学生网络优化具有不同的影响。我们试图从两点克服这些挑战。首先,为了实现多模式对比度学习并平衡培训成本和效果,我们建议使用教师网络估算学生的困难样本,使学生吸收了预培训的老师的强大知识,并掌握知识来自硬样品。其次,要从硬样品对学习动态,我们提出动态蒸馏以动态学习不同困难的样本,从更好地平衡知识和学生的自学能力的困难的角度。我们成功地将我们提出的DCD策略应用于两个最先进的视觉语言预处理模型,即vilt和仪表。关于MS-Coco和FlickR30K基准测试的广泛实验显示了我们DCD框架的有效性和效率。令人鼓舞的是,与现有的ITR型号相比,我们可以至少加快推断至少129美元的$ \ times $。
translated by 谷歌翻译
知识蒸馏在模型压缩方面取得了显着的成就。但是,大多数现有方法需要原始的培训数据,而实践中的实际数据通常是不可用的,因为隐私,安全性和传输限制。为了解决这个问题,我们提出了一种有条件的生成数据无数据知识蒸馏(CGDD)框架,用于培训有效的便携式网络,而无需任何实际数据。在此框架中,除了使用教师模型中提取的知识外,我们将预设标签作为额外的辅助信息介绍以培训发电机。然后,训练有素的发生器可以根据需要产生指定类别的有意义的培训样本。为了促进蒸馏过程,除了使用常规蒸馏损失,我们将预设标签视为地面真理标签,以便学生网络直接由合成训练样本类别监督。此外,我们强制学生网络模仿教师模型的注意图,进一步提高了其性能。为了验证我们方法的优越性,我们设计一个新的评估度量称为相对准确性,可以直接比较不同蒸馏方法的有效性。培训的便携式网络通过提出的数据无数据蒸馏方法获得了99.63%,99.07%和99.84%的CIFAR10,CIFAR100和CALTECH101的相对准确性。实验结果表明了所提出的方法的优越性。
translated by 谷歌翻译
在最近的半监督语义分割方法中,一致性正则化已被广泛研究。从图像,功能和网络扰动中受益,已经实现了出色的性能。为了充分利用这些扰动,在这项工作中,我们提出了一个新的一致性正则化框架,称为相互知识蒸馏(MKD)。我们创新地基于一致性正则化方法,创新了两个辅助均值老师模型。更具体地说,我们使用一位卑鄙的老师生成的伪标签来监督另一个学生网络,以在两个分支之间进行相互知识蒸馏。除了使用图像级强和弱的增强外,我们还采用了特征增强,考虑隐性语义分布来增加对学生的进一步扰动。提出的框架大大增加了训练样本的多样性。公共基准测试的广泛实验表明,我们的框架在各种半监督设置下都优于先前的最先进方法(SOTA)方法。
translated by 谷歌翻译
最近,许多半监督的对象检测(SSOD)方法采用教师学生框架并取得了最新的结果。但是,教师网络与学生网络紧密相结合,因为教师是学生的指数移动平均值(EMA),这会导致表现瓶颈。为了解决耦合问题,我们为SSOD提出了一个周期自我训练(CST)框架,该框架由两个老师T1和T2,两个学生S1和S2组成。基于这些网络,构建了一个周期自我训练机制​​,即S1 $ {\ rightarrow} $ t1 $ {\ rightArow} $ s2 $ {\ rightArrow} $ t2 $ {\ rightArrow} $ s1。对于S $ {\ Rightarrow} $ T,我们还利用学生的EMA权重来更新老师。对于t $ {\ rightarrow} $ s,而不是直接为其学生S1(S2)提供监督,而是老师T1(T2)为学生S2(S1)生成伪标记,从而松散耦合效果。此外,由于EMA的财产,老师最有可能积累学生的偏见,并使错误变得不可逆转。为了减轻问题,我们还提出了分配一致性重新加权策略,在该策略中,根据教师T1和T2的分配一致性,将伪标记重新加权。通过该策略,可以使用嘈杂的伪标签对两个学生S2和S1进行训练,以避免确认偏见。广泛的实验证明了CST的优势,通过将AP比基线优于最先进的方法提高了2.1%的绝对AP改进,并具有稀缺的标记数据,而胜过了2.1%的绝对AP。
translated by 谷歌翻译