One of the crucial issues in federated learning is how to develop efficient optimization algorithms. Most of the current ones require full device participation and/or impose strong assumptions for convergence. Different from the widely-used gradient descent-based algorithms, in this paper, we develop an inexact alternating direction method of multipliers (ADMM), which is both computation- and communication-efficient, capable of combating the stragglers' effect, and convergent under mild conditions. Furthermore, it has a high numerical performance compared with several state-of-the-art algorithms for federated learning.
translated by 谷歌翻译
Federated learning has shown its advances recently but is still facing many challenges, such as how algorithms save communication resources and reduce computational costs, and whether they converge. To address these critical issues, we propose a hybrid federated learning algorithm (FedGiA) that combines the gradient descent and the inexact alternating direction method of multipliers. The proposed algorithm is more communication- and computation-efficient than several state-of-the-art algorithms theoretically and numerically. Moreover, it also converges globally under mild conditions.
translated by 谷歌翻译
联邦学习最近在机器学习中迅速发展,引起了各种研究主题。流行的优化算法基于(随机)梯度下降方法的框架或乘数的交替方向方法。在本文中,我们部署了一种确切的惩罚方法来处理联合学习,并提出了一种算法Fedepm,该算法能够解决联合学习中的四个关键问题:沟通效率,计算复杂性,Stragglers的效果和数据隐私。此外,事实证明,它具有收敛性和作证为具有高数值性能。
translated by 谷歌翻译
联邦学习(FL)已成为一个热门研究领域,以在拥有敏感本地数据的多个客户中对机器学习模型进行协作培训。然而,主要使用随机梯度下降(SGD)研究了不受约束的联邦优化,该梯度下降可能会缓慢收敛,并且限制了联邦优化的优化,这更具挑战性,迄今尚未研究。本文分别研究了基于样本和基于特征的联合优化,并考虑了每个人的无限制和约束非凸问题。首先,我们建议使用随机连续的凸近似(SSCA)和迷你批次技术提出FL算法。这些算法可以充分利用目标和约束函数的结构,并逐步利用样品。我们表明,所提出的FL算法分别收敛到固定点和相应不受约束和约束的非凸问题的固定点和Karush-Kuhn-Tucker(KKT)点。接下来,我们提供算法示例,每回合具有吸引人的计算复杂性和通信负载。我们表明,未约束的联邦优化算法示例与动量SGD相同,与FL算法相同,并在SSCA和动量SGD之间提供分析连接。最后,数值实验证明了在收敛速度,通信和计算成本以及模型规范中提出算法的固有优势。
translated by 谷歌翻译
In federated optimization, heterogeneity in the clients' local datasets and computation speeds results in large variations in the number of local updates performed by each client in each communication round. Naive weighted aggregation of such models causes objective inconsistency, that is, the global model converges to a stationary point of a mismatched objective function which can be arbitrarily different from the true objective. This paper provides a general framework to analyze the convergence of federated heterogeneous optimization algorithms. It subsumes previously proposed methods such as FedAvg and FedProx and provides the first principled understanding of the solution bias and the convergence slowdown due to objective inconsistency. Using insights from this analysis, we propose Fed-Nova, a normalized averaging method that eliminates objective inconsistency while preserving fast error convergence.
translated by 谷歌翻译
联合学习(FL)算法通常在每个圆数(部分参与)大并且服务器的通信带宽有限时对每个轮子(部分参与)进行分数。近期对FL的收敛分析的作品专注于无偏见的客户采样,例如,随机均匀地采样,由于高度的系统异质性和统计异质性而均匀地采样。本文旨在设计一种自适应客户采样算法,可以解决系统和统计异质性,以最小化壁时钟收敛时间。我们获得了具有任意客户端采样概率的流动算法的新的遗传融合。基于界限,我们分析了建立了总学习时间和采样概率之间的关系,这导致了用于训练时间最小化的非凸优化问题。我们设计一种高效的算法来学习收敛绑定中未知参数,并开发低复杂性算法以大致解决非凸面问题。硬件原型和仿真的实验结果表明,与几个基线采样方案相比,我们所提出的采样方案显着降低了收敛时间。值得注意的是,我们的硬件原型的方案比均匀的采样基线花费73%,以达到相同的目标损失。
translated by 谷歌翻译
我们考虑开放的联合学习(FL)系统,客户可以在FL过程中加入和/或离开系统。鉴于当前客户端数量的差异,在开放系统中不能保证与固定模型的收敛性。取而代之的是,我们求助于一个新的性能指标,该指标称我们的开放式FL系统的稳定性为量,该指标量化了开放系统中学习模型的幅度。在假设本地客户端的功能强烈凸出和平滑的假设下,我们从理论上量化了两种FL算法的稳定性半径,即本地SGD和本地ADAM。我们观察到此半径依赖于几个关键参数,包括功能条件号以及随机梯度的方差。通过对合成和现实世界基准数据集的数值模拟,我们的理论结果得到了进一步验证。
translated by 谷歌翻译
作为一个普遍的分布式学习范式,联邦学习(FL)训练了大量通信的大量设备的全球模型。本文研究了FL设置中的一类复合优化和统计恢复问题,其损失函数由数据依赖的平滑损耗和非平滑正常器组成。示例包括使用套索的稀疏线性回归,使用核标准正则化等等的低级矩阵恢复等。在现有文献中,联合复合优化算法仅从优化的角度设计,而无需任何统计保证。此外,他们不考虑在统计恢复问题中常用(受限)强凸度。从优化和统计角度来看,我们都会推进此问题的前沿。从优化的前期,我们提出了一种名为\ textit {快速联合双平均}的新算法,用于强烈凸出和平滑损失,并在复合设置中建立最新的迭代和通信复杂性。特别是,我们证明它具有快速的速度,线性加速和减少的沟通回合。从统计前期开始,对于受限制的强烈凸出和平滑损失,我们设计了另一种算法,即\ textIt {多阶段联合双重平均},并证明了与线性加速绑定到最佳统计精度的高概率复杂性。合成数据和真实数据的实验表明,我们的方法的性能优于其他基线。据我们所知,这是为FL中复合问题提供快速优化算法和统计恢复保证的第一项工作。
translated by 谷歌翻译
数据异构联合学习(FL)系统遭受了两个重要的收敛误差来源:1)客户漂移错误是由于在客户端执行多个局部优化步骤而引起的,以及2)部分客户参与错误,这是一个事实,仅一小部分子集边缘客户参加每轮培训。我们发现其中,只有前者在文献中受到了极大的关注。为了解决这个问题,我们提出了FedVarp,这是在服务器上应用的一种新颖的差异算法,它消除了由于部分客户参与而导致的错误。为此,服务器只是将每个客户端的最新更新保持在内存中,并将其用作每回合中非参与客户的替代更新。此外,为了减轻服务器上的内存需求,我们提出了一种新颖的基于聚类的方差降低算法clusterfedvarp。与以前提出的方法不同,FedVarp和ClusterFedVarp均不需要在客户端上进行其他计算或其他优化参数的通信。通过广泛的实验,我们表明FedVarp优于最先进的方法,而ClusterFedVarp实现了与FedVarp相当的性能,并且记忆要求较少。
translated by 谷歌翻译
从经验上证明,在跨客户聚集之前应用多个本地更新的实践是克服联合学习(FL)中的通信瓶颈的成功方法。在这项工作中,我们提出了一种通用食谱,即FedShuffle,可以更好地利用FL中的本地更新,尤其是在异质性方面。与许多先前的作品不同,FedShuffle在每个设备的更新数量上没有任何统一性。我们的FedShuffle食谱包括四种简单的功能成分:1)数据的本地改组,2)调整本地学习率,3)更新加权,4)减少动量方差(Cutkosky and Orabona,2019年)。我们对FedShuffle进行了全面的理论分析,并表明从理论和经验上讲,我们的方法都不遭受FL方法中存在的目标功能不匹配的障碍,这些方法假设在异质FL设置中,例如FedAvg(McMahan等人,McMahan等, 2017)。此外,通过将上面的成分结合起来,FedShuffle在Fednova上改善(Wang等,2020),以前提议解决此不匹配。我们还表明,在Hessian相似性假设下,通过降低动量方差的FedShuffle可以改善非本地方法。最后,通过对合成和现实世界数据集的实验,我们说明了FedShuffle中使用的四种成分中的每种如何有助于改善FL中局部更新的使用。
translated by 谷歌翻译
Federated learning (FL) has emerged as an instance of distributed machine learning paradigm that avoids the transmission of data generated on the users' side. Although data are not transmitted, edge devices have to deal with limited communication bandwidths, data heterogeneity, and straggler effects due to the limited computational resources of users' devices. A prominent approach to overcome such difficulties is FedADMM, which is based on the classical two-operator consensus alternating direction method of multipliers (ADMM). The common assumption of FL algorithms, including FedADMM, is that they learn a global model using data only on the users' side and not on the edge server. However, in edge learning, the server is expected to be near the base station and have direct access to rich datasets. In this paper, we argue that leveraging the rich data on the edge server is much more beneficial than utilizing only user datasets. Specifically, we show that the mere application of FL with an additional virtual user node representing the data on the edge server is inefficient. We propose FedTOP-ADMM, which generalizes FedADMM and is based on a three-operator ADMM-type technique that exploits a smooth cost function on the edge server to learn a global model parallel to the edge devices. Our numerical experiments indicate that FedTOP-ADMM has substantial gain up to 33\% in communication efficiency to reach a desired test accuracy with respect to FedADMM, including a virtual user on the edge server.
translated by 谷歌翻译
联邦元学习(FML)已成为应对当今边缘学习竞技场中的数据限制和异质性挑战的承诺范式。然而,其性能通常受到缓慢的收敛性和相应的低通信效率的限制。此外,由于可用的无线电频谱和物联网设备的能量容量通常不足,因此在在实际无线网络中部署FML时,控制资源分配和能量消耗是至关重要的。为了克服挑战,在本文中,我们严格地分析了每个设备对每轮全球损失减少的贡献,并使用非统一的设备选择方案开发FML算法(称为Nufm)以加速收敛。之后,我们制定了集成NuFM在多通道无线系统中的资源分配问题,共同提高收敛速率并最小化壁钟时间以及能量成本。通过逐步解构原始问题,我们设计了一个联合设备选择和资源分配策略,以解决理论保证问题。此外,我们表明Nufm的计算复杂性可以通过$ O(d ^ 2)$至$ o(d)$(使用模型维度$ d $)通过组合两个一阶近似技术来降低。广泛的仿真结果表明,与现有基线相比,所提出的方法的有效性和优越性。
translated by 谷歌翻译
联合学习(FL)是分布式学习的一种变体,其中Edge设备可以协作学习模型,而无需与中央服务器或彼此共享数据。我们将使用公共客户库作为多模型FL的联合设置中同时培训多个独立模型的过程。在这项工作中,我们提出了用于多模型FL的流行FedAvg算法的两个变体,并具有可证明的收敛保证。我们进一步表明,对于相同数量的计算,多模型FL可以比单独训练每个模型具有更好的性能。我们通过在强凸,凸和非凸面设置中进行实验来补充理论结果。
translated by 谷歌翻译
众所周知,客户师沟通可能是联邦学习中的主要瓶颈。在这项工作中,我们通过一种新颖的客户端采样方案解决了这个问题,我们将允许的客户数量限制为将其更新传达给主节点的数量。在每个通信回合中,所有参与的客户都会计算他们的更新,但只有具有“重要”更新的客户可以与主人通信。我们表明,可以仅使用更新的规范来衡量重要性,并提供一个公式以最佳客户参与。此公式将所有客户参与的完整更新与我们有限的更新(参与客户数量受到限制)之间的距离最小化。此外,我们提供了一种简单的算法,该算法近似于客户参与的最佳公式,该公式仅需要安全的聚合,因此不会损害客户的隐私。我们在理论上和经验上都表明,对于分布式SGD(DSGD)和联合平均(FedAvg),我们的方法的性能可以接近完全参与,并且优于基线,在参与客户均匀地采样的基线。此外,我们的方法与现有的减少通信开销(例如本地方法和通信压缩方法)的现有方法兼容。
translated by 谷歌翻译
联合学习(FL)是一种在不获取客户私有数据的情况下培训全球模型的协同机器学习技术。 FL的主要挑战是客户之间的统计多样性,客户设备之间的计算能力有限,以及服务器和客户之间的过度沟通开销。为解决这些挑战,我们提出了一种通过最大化FEDMAC的相关性稀疏个性化联合学习计划。通过将近似的L1-norm和客户端模型与全局模型之间的相关性结合到标准流失函数中,提高了统计分集数据的性能,并且与非稀疏FL相比,网络所需的通信和计算负载减少。收敛分析表明,FEDMAC中的稀疏约束不会影响全球模型的收敛速度,理论结果表明,FEDMAC可以实现良好的稀疏个性化,这比基于L2-NOM的个性化方法更好。实验,我们展示了与最先进的个性化方法相比的这种稀疏个性化建筑的益处(例如,FEDMAC分别达到98.95%,99.37%,99.37%,99.37%,99.37%,99.37%,99.37%,99.37%,99.37%,99.37%,99.37%,99.37%,高精度,FMNIST,CIFAR-100和非IID变体下的合成数据集)。
translated by 谷歌翻译
牛顿型方法由于其快速收敛而在联合学习中很受欢迎。尽管如此,由于要求将Hessian信息从客户发送到参数服务器(PS),因此他们遭受了两个主要问题:沟通效率低下和较低的隐私性。在这项工作中,我们介绍了一个名为Fednew的新颖框架,其中无需将Hessian信息从客户传输到PS,因此解决了瓶颈以提高沟通效率。此外,与现有的最新技术相比,Fednew隐藏了梯度信息,并导致具有隐私的方法。 Fednew中的核心小说想法是引入两个级别的框架,并在仅使用一种交替的乘数方法(ADMM)步骤更新逆Hessian级别产品之间,然后使用Newton的方法执行全局模型更新。尽管在每次迭代中只使用一个ADMM通行证来近似逆Hessian梯度产品,但我们开发了一种新型的理论方法来显示Fednew在凸问题上的融合行为。此外,通过利用随机量化,可以显着减少通信开销。使用真实数据集的数值结果显示了与现有方法相比,在通信成本方面,Fednew的优越性。
translated by 谷歌翻译
在这项工作中,我们提出了FedSSO,这是一种用于联合学习的服务器端二阶优化方法(FL)。与以前朝这个方向的工作相反,我们在准牛顿方法中采用了服务器端近似,而无需客户的任何培训数据。通过这种方式,我们不仅将计算负担从客户端转移到服务器,而且还消除了客户和服务器之间二阶更新的附加通信。我们为我们的新方法的收敛提供了理论保证,并从经验上证明了我们在凸面和非凸面设置中的快速收敛和沟通节省。
translated by 谷歌翻译
联合学习(FL)使大量优化的优势计算设备(例如,移动电话)联合学习全局模型而无需数据共享。在FL中,数据以分散的方式产生,具有高异质性。本文研究如何在联邦设置中对统计估算和推断进行统计估算和推理。我们分析所谓的本地SGD,这是一种使用间歇通信来提高通信效率的多轮估计过程。我们首先建立一个{\ IT功能的中央极限定理},显示了本地SGD的平均迭代弱融合到重新定位的布朗运动。我们接下来提供两个迭代推断方法:{\ IT插件}和{\ IT随机缩放}。随机缩放通过沿整个本地SGD路径的信息构造推断的渐近枢转统计。这两种方法都是通信高效且适用于在线数据。我们的理论和经验结果表明,本地SGD同时实现了统计效率和通信效率。
translated by 谷歌翻译
As a novel distributed learning paradigm, federated learning (FL) faces serious challenges in dealing with massive clients with heterogeneous data distribution and computation and communication resources. Various client-variance-reduction schemes and client sampling strategies have been respectively introduced to improve the robustness of FL. Among others, primal-dual algorithms such as the alternating direction of method multipliers (ADMM) have been found being resilient to data distribution and outperform most of the primal-only FL algorithms. However, the reason behind remains a mystery still. In this paper, we firstly reveal the fact that the federated ADMM is essentially a client-variance-reduced algorithm. While this explains the inherent robustness of federated ADMM, the vanilla version of it lacks the ability to be adaptive to the degree of client heterogeneity. Besides, the global model at the server under client sampling is biased which slows down the practical convergence. To go beyond ADMM, we propose a novel primal-dual FL algorithm, termed FedVRA, that allows one to adaptively control the variance-reduction level and biasness of the global model. In addition, FedVRA unifies several representative FL algorithms in the sense that they are either special instances of FedVRA or are close to it. Extensions of FedVRA to semi/un-supervised learning are also presented. Experiments based on (semi-)supervised image classification tasks demonstrate superiority of FedVRA over the existing schemes in learning scenarios with massive heterogeneous clients and client sampling.
translated by 谷歌翻译
Federated learning (FL) is a decentralized and privacy-preserving machine learning technique in which a group of clients collaborate with a server to learn a global model without sharing clients' data. One challenge associated with FL is statistical diversity among clients, which restricts the global model from delivering good performance on each client's task. To address this, we propose an algorithm for personalized FL (pFedMe) using Moreau envelopes as clients' regularized loss functions, which help decouple personalized model optimization from the global model learning in a bi-level problem stylized for personalized FL. Theoretically, we show that pFedMe's convergence rate is state-of-the-art: achieving quadratic speedup for strongly convex and sublinear speedup of order 2/3 for smooth nonconvex objectives. Experimentally, we verify that pFedMe excels at empirical performance compared with the vanilla FedAvg and Per-FedAvg, a meta-learning based personalized FL algorithm.
translated by 谷歌翻译