分流学习和差异隐私是具有越来越多的技术,可以帮助在分布式数据集上有助于隐私的先进分析。反对分裂学习的攻击是一个重要的评估工具,最近一直在接受增加的研究。这项工作的贡献是将最近的特征空间劫持攻击(FSHA)应用于使用差分隐私(DP)增强的分体式神经网络的学习过程,使用客户端的离心DP优化器。FSHA攻击获得客户的私有数据重建,在任意设置DP ePsilon级别时以低错误率。我们还试验维度减少,作为潜在的攻击风险缓解,并表明它可能有所帮助。我们讨论了差异隐私不是在此设置中有效保护的原因,提及其他风险缓解方法。
translated by 谷歌翻译
我们调查分裂学习的安全 - 一种新颖的协作机器学习框架,通过需要最小的资源消耗来实现峰值性能。在本文中,我们通过介绍客户私人培训集重建的一般攻击策略来揭示议定书的脆弱性并展示其固有的不安全。更突出地,我们表明恶意服务器可以积极地劫持分布式模型的学习过程,并将其纳入不安全状态,从而为客户端提供推动攻击。我们实施不同的攻击调整,并在各种数据集中测试它们以及现实的威胁方案。我们证明我们的攻击能够克服最近提出的防御技术,旨在提高分裂学习议定书的安全性。最后,我们还通过扩展以前设计的联合学习的攻击来说明协议对恶意客户的不安全性。要使我们的结果可重复,我们会在https://github.com/pasquini-dario/splitn_fsha提供的代码。
translated by 谷歌翻译
Differentially Private Stochastic Gradient Descent (DP-SGD) is a key method for applying privacy in the training of deep learning models. This applies isotropic Gaussian noise to gradients during training, which can perturb these gradients in any direction, damaging utility. Metric DP, however, can provide alternative mechanisms based on arbitrary metrics that might be more suitable. In this paper we apply \textit{directional privacy}, via a mechanism based on the von Mises-Fisher (VMF) distribution, to perturb gradients in terms of \textit{angular distance} so that gradient direction is broadly preserved. We show that this provides $\epsilon d$-privacy for deep learning training, rather than the $(\epsilon, \delta)$-privacy of the Gaussian mechanism; and that experimentally, on key datasets, the VMF mechanism can outperform the Gaussian in the utility-privacy trade-off.
translated by 谷歌翻译
分布式深度学习框架(例如分裂学习)在培训深神经网络的计算成本以及一组数据持有人的集体数据的隐私性利用方面为巨大的好处。特别是,通过将神经网络分配在客户端和服务器之间,以便客户端计算初始图层集,并且服务器计算其余的。但是,此方法引入了试图窃取客户端数据的恶意服务器的唯一攻击向量:该服务器可以将客户端模型引导到学习其选择的任何任务,例如倾向于输出易于可逆值。有了一个已经提出的具体示例(Pasquini等,CCS '21),这种训练式攻击攻击构成了分裂学习客户的数据隐私的重大风险。在本文中,我们提出了SplitGuard,该方法可以通过这种方法来检测该方法是否是通过训练式攻击攻击的目标。我们通过实验评估方法的有效性,将其与潜在的替代方案进行比较,并详细讨论与其使用相关的各个点。我们得出的结论是,Splitguard可以有效地检测训练式攻击,同时最大程度地减少对手回收的信息量。
translated by 谷歌翻译
Deep Learning has recently become hugely popular in machine learning for its ability to solve end-to-end learning systems, in which the features and the classifiers are learned simultaneously, providing significant improvements in classification accuracy in the presence of highly-structured and large databases.Its success is due to a combination of recent algorithmic breakthroughs, increasingly powerful computers, and access to significant amounts of data.Researchers have also considered privacy implications of deep learning. Models are typically trained in a centralized manner with all the data being processed by the same training algorithm. If the data is a collection of users' private data, including habits, personal pictures, geographical positions, interests, and more, the centralized server will have access to sensitive information that could potentially be mishandled. To tackle this problem, collaborative deep learning models have recently been proposed where parties locally train their deep learning structures and only share a subset of the parameters in the attempt to keep their respective training sets private. Parameters can also be obfuscated via differential privacy (DP) to make information extraction even more challenging, as proposed by Shokri and Shmatikov at CCS'15.Unfortunately, we show that any privacy-preserving collaborative deep learning is susceptible to a powerful attack that we devise in this paper. In particular, we show that a distributed, federated, or decentralized deep learning approach is fundamentally broken and does not protect the training sets of honest participants. The attack we developed exploits the real-time nature of the learning process that allows the adversary to train a Generative Adversarial Network (GAN) that generates prototypical samples of the targeted training set that was meant to be private (the samples generated by the GAN are intended to come from the same distribution as the training data). Interestingly, we show that record-level differential privacy applied to the shared parameters of the model, as suggested in previous work, is ineffective (i.e., record-level DP is not designed to address our attack).
translated by 谷歌翻译
Differentially private federated learning (DP-FL) has received increasing attention to mitigate the privacy risk in federated learning. Although different schemes for DP-FL have been proposed, there is still a utility gap. Employing central Differential Privacy in FL (CDP-FL) can provide a good balance between the privacy and model utility, but requires a trusted server. Using Local Differential Privacy for FL (LDP-FL) does not require a trusted server, but suffers from lousy privacy-utility trade-off. Recently proposed shuffle DP based FL has the potential to bridge the gap between CDP-FL and LDP-FL without a trusted server; however, there is still a utility gap when the number of model parameters is large. In this work, we propose OLIVE, a system that combines the merits from CDP-FL and LDP-FL by leveraging Trusted Execution Environment (TEE). Our main technical contributions are the analysis and countermeasures against the vulnerability of TEE in OLIVE. Firstly, we theoretically analyze the memory access pattern leakage of OLIVE and find that there is a risk for sparsified gradients, which is common in FL. Secondly, we design an inference attack to understand how the memory access pattern could be linked to the training data. Thirdly, we propose oblivious yet efficient algorithms to prevent the memory access pattern leakage in OLIVE. Our experiments on real-world data demonstrate that OLIVE is efficient even when training a model with hundreds of thousands of parameters and effective against side-channel attacks on TEE.
translated by 谷歌翻译
Federated learning is a collaborative method that aims to preserve data privacy while creating AI models. Current approaches to federated learning tend to rely heavily on secure aggregation protocols to preserve data privacy. However, to some degree, such protocols assume that the entity orchestrating the federated learning process (i.e., the server) is not fully malicious or dishonest. We investigate vulnerabilities to secure aggregation that could arise if the server is fully malicious and attempts to obtain access to private, potentially sensitive data. Furthermore, we provide a method to further defend against such a malicious server, and demonstrate effectiveness against known attacks that reconstruct data in a federated learning setting.
translated by 谷歌翻译
隐私法规法(例如GDPR)将透明度和安全性作为数据处理算法的设计支柱。在这种情况下,联邦学习是保护隐私的分布式机器学习的最具影响力的框架之一,从而实现了许多自然语言处理和计算机视觉任务的惊人结果。一些联合学习框架采用差异隐私,以防止私人数据泄漏到未经授权的政党和恶意攻击者。但是,许多研究突出了标准联邦学习对中毒和推理的脆弱性,因此引起了人们对敏感数据潜在风险的担忧。为了解决此问题,我们提出了SGDE,这是一种生成数据交换协议,可改善跨索洛联合会中的用户安全性和机器学习性能。 SGDE的核心是共享具有强大差异隐私的数据生成器,保证了对私人数据培训的培训,而不是通信显式梯度信息。这些发电机合成了任意大量数据,这些数据保留了私人样品的独特特征,但有很大差异。我们展示了将SGDE纳入跨核心联合网络如何提高对联邦学习最有影响力的攻击的弹性。我们在图像和表格数据集上测试我们的方法,利用β变量自动编码器作为数据生成器,并突出了对非生成数据的本地和联合学习的公平性和绩效改进。
translated by 谷歌翻译
培训深度神经网络通常会迫使用户在分布式或外包环境中工作,并伴随着隐私问题。 Split学习旨在通过在客户端和服务器之间分配模型来解决这一问题。该方案据说提供了隐私,因为服务器无法看到客户端的模型和输入。我们表明,通过两次新颖的攻击,这是不正确的。 (1)我们表明,只有掌握客户端神经网络体系结构知识的诚实但充满感染的分裂学习服务器可以恢复输入样本并获得与客户端模型的功能相似的模型,而无需检测到。 (2)我们证明,如果客户端仅隐藏模型的输出层以“保护”专用标签,则诚实但有趣的服务器可以完全准确地推断出标签。我们使用各种基准数据集测试我们的攻击,并反对提议的隐私增强扩展以分裂学习。我们的结果表明,明文分裂学习可能会带来严重的风险,从数据(输入)隐私到知识产权(模型参数),并且不仅仅提供虚假的安全感。
translated by 谷歌翻译
我们审查在机器学习(ML)中使用差异隐私(DP)对隐私保护的使用。我们表明,在维护学习模型的准确性的驱动下,基于DP的ML实现非常宽松,以至于它们不提供DP的事前隐私保证。取而代之的是,他们提供的基本上是与传统(经常受到批评的)统计披露控制方法相似的噪声。由于缺乏正式的隐私保证,因此所提供的实际隐私水平必须经过实验评估,这很少进行。在这方面,我们提出的经验结果表明,ML中的标准反拟合技术可以比DP实现更好的实用性/隐私/效率权衡。
translated by 谷歌翻译
在联合学习(FL)中,数据不会在联合培训机器学习模型时留下个人设备。相反,这些设备与中央党(例如,公司)共享梯度。因为数据永远不会“离开”个人设备,因此FL作为隐私保留呈现。然而,最近显示这种保护是一个薄的外观,甚至是一种被动攻击者观察梯度可以重建各个用户的数据。在本文中,我们争辩说,事先工作仍然很大程度上低估了FL的脆弱性。这是因为事先努力专门考虑被动攻击者,这些攻击者是诚实但好奇的。相反,我们介绍了一个活跃和不诚实的攻击者,作为中央会,他们能够在用户计算模型渐变之前修改共享模型的权重。我们称之为修改的重量“陷阱重量”。我们的活跃攻击者能够完全恢复用户数据,并在接近零成本时:攻击不需要复杂的优化目标。相反,它利用了模型梯度的固有数据泄漏,并通过恶意改变共享模型的权重来放大这种效果。这些特异性使我们的攻击能够扩展到具有大型迷你批次数据的模型。如果来自现有工作的攻击者需要小时才能恢复单个数据点,我们的方法需要毫秒来捕获完全连接和卷积的深度神经网络的完整百分之批次数据。最后,我们考虑缓解。我们观察到,FL中的差异隐私(DP)的当前实现是有缺陷的,因为它们明确地信任中央会,并在增加DP噪音的关键任务,因此不提供对恶意中央党的保护。我们还考虑其他防御,并解释为什么它们类似地不足。它需要重新设计FL,为用户提供任何有意义的数据隐私。
translated by 谷歌翻译
如今,信息技术的发展正在迅速增长。在大数据时代,个人信息的隐私更加明显。主要的挑战是找到一种方法来确保在发布和分析数据时不会披露敏感的个人信息。在信任的第三方数据策展人的假设上建立了集中式差异隐私。但是,这个假设在现实中并不总是正确的。作为一种新的隐私保护模型,当地的差异隐私具有相对强大的隐私保证。尽管联邦学习相对是一种用于分布式学习的隐私方法,但它仍然引入了各种隐私问题。为了避免隐私威胁并降低沟通成本,我们建议将联合学习和当地差异隐私与动量梯度下降整合在一起,以提高机器学习模型的性能。
translated by 谷歌翻译
联合学习已被提议作为隐私的机器学习框架,该框架使多个客户能够在不共享原始数据的情况下进行协作。但是,在此框架中,设计并不能保证客户隐私保护。先前的工作表明,联邦学习中的梯度共享策略可能容易受到数据重建攻击的影响。但是,实际上,考虑到高沟通成本或由于增强隐私要求,客户可能不会传输原始梯度。实证研究表明,梯度混淆,包括通过梯度噪声注入和通过梯度压缩的无意化混淆的意图混淆,可以提供更多的隐私保护,以防止重建攻击。在这项工作中,我们提出了一个针对联合学习中图像分类任务的新数据重建攻击框架。我们表明,通常采用的梯度后处理程序,例如梯度量化,梯度稀疏和梯度扰动,可能会在联合学习中具有错误的安全感。与先前的研究相反,我们认为不应将隐私增强视为梯度压缩的副产品。此外,我们在提出的框架下设计了一种新方法,以在语义层面重建图像。我们量化语义隐私泄漏,并根据图像相似性分数进行比较。我们的比较挑战了文献中图像数据泄漏评估方案。结果强调了在现有联合学习算法中重新审视和重新设计对客户数据的隐私保护机制的重要性。
translated by 谷歌翻译
如今,深度学习模型的所有者和开发人员必须考虑其培训数据的严格隐私保护规则,通常是人群来源且保留敏感信息。如今,深入学习模型执行隐私保证的最广泛采用的方法依赖于实施差异隐私的优化技术。根据文献,这种方法已被证明是针对多种模型的隐私攻击的成功防御,但其缺点是对模型的性能的实质性降级。在这项工作中,我们比较了差异私有的随机梯度下降(DP-SGD)算法与使用正则化技术的标准优化实践的有效性。我们分析了生成模型的实用程序,培训性能以及成员推理和模型反转攻击对学习模型的有效性。最后,我们讨论了差异隐私的缺陷和限制,并从经验上证明了辍学和L2型规范的卓越保护特性。
translated by 谷歌翻译
联合学习(FL),数据保留在联合客户端,并且仅与中央聚合器共享梯度更新是私人的。最近的工作表明,具有梯度级别访问权限的对手可以成功进行推理和重建攻击。在这种情况下,众所周知,差异化(DP)学习可以提供弹性。但是,现状中使用的方法(\ ie中央和本地DP)引入了不同的公用事业与隐私权衡权衡。在这项工作中,我们迈出了通过{\ em层次fl(HFL)}来缓解此类权衡的第一步。我们证明,通过引入一个新的中介层,可以添加校准的DP噪声,可以获得更好的隐私与公用事业权衡;我们称此{\ em层次结构DP(HDP)}。我们使用3个不同数据集的实验(通常用作FL的基准)表明HDP产生的模型与使用中央DP获得的模型一样准确,在中央聚集器处添加了噪声。这种方法还为推理对手提供了可比的好处,例如在本地DP案例中,在联合客户端添加了噪音。
translated by 谷歌翻译
梯度泄漏攻击被认为是深度学习中的邪恶隐私威胁之一,因为攻击者在迭代培训期间隐蔽了梯度更新,而不会影响模型培训质量,但又使用泄漏的梯度逐步重建敏感培训数据,具有高攻击成功率。虽然具有差异隐私的深度学习是发布具有差异隐私保障的深度学习模型的违法标准,但我们展示了具有固定隐私参数的差异私有算法易受梯度泄漏攻击的影响。本文调查了差异隐私(DP)的梯度泄漏弹性深度学习的替代方法。首先,我们分析了差异隐私的深度学习的现有实现,它使用固定噪声方差使用固定隐私参数将恒定噪声对所有层中的梯度注入恒定噪声。尽管提供了DP保证,但该方法遭受了低精度,并且很容易受到梯度泄漏攻击。其次,通过使用动态隐私参数,我们提出了一种梯度泄漏弹性深度学习方法,差异隐私保证。与导致恒定噪声方差导致的固定参数策略不同,不同的动态参数策略存在替代技术,以引入自适应噪声方差和自适应噪声注入,其与差别私有模型训练期间的梯度更新的趋势紧密对齐。最后,我们描述了四个互补指标来评估和比较替代方法。
translated by 谷歌翻译
Split学习(SL)通过允许客户在不共享原始数据的情况下协作培训深度学习模型来实现数据隐私保护。但是,SL仍然有限制,例如潜在的数据隐私泄漏和客户端的高计算。在这项研究中,我们建议将SL局部层进行二线以进行更快的计算(在移动设备上的培训和推理阶段的前进时间少17.5倍)和减少内存使用情况(最多减少32倍的内存和带宽要求) 。更重要的是,二进制的SL(B-SL)模型可以减少SL污染数据中的隐私泄漏,而模型精度的降解仅小。为了进一步增强隐私保护,我们还提出了两种新颖的方法:1)培训额外的局部泄漏损失,2)应用差异隐私,可以单独或同时集成到B-SL模型中。与多种基准模型相比,使用不同数据集的实验结果肯定了B-SL模型的优势。还说明了B-SL模型针对功能空间劫持攻击(FSHA)的有效性。我们的结果表明,B-SL模型对于具有高隐私保护要求(例如移动医疗保健应用程序)的轻巧的物联网/移动应用程序很有希望。
translated by 谷歌翻译
语音情感识别(SER)处理语音信号以检测和表征表达的感知情绪。许多SER应用系统经常获取和传输在客户端收集的语音数据,以远程云平台进行推理和决策。然而,语音数据不仅涉及在声乐表达中传达的情绪,而且还具有其他敏感的人口特征,例如性别,年龄和语言背景。因此,塞尔系统希望能够在防止敏感和人口统计信息的意外/不正当推论的同时对情感构建进行分类的能力。联合学习(FL)是一个分布式机器学习范例,其协调客户端,以便在不共享其本地数据的情况下协同培训模型。此培训方法似乎是安全的,可以提高SER的隐私。然而,最近的作品表明,流动方法仍然容易受到重建攻击和会员推论攻击等各种隐私攻击的影响。虽然这些大部分都集中在计算机视觉应用程序上,但是使用FL技术训练的SER系统中存在这种信息泄漏。为了评估使用FL培训的SER系统的信息泄漏,我们提出了一个属性推理攻击框架,其分别涉及来自共享梯度或模型参数的客户端的敏感属性信息,分别对应于FEDSGD和FADAVG训练算法。作为一种用例,我们使用三个SER基准数据集来统一地评估我们预测客户的性别信息的方法:IEMocap,Crema-D和MSP-EXPLA。我们表明,使用FL培训的SER系统可实现属性推理攻击。我们进一步确定大多数信息泄漏可能来自SER模型中的第一层。
translated by 谷歌翻译
制药行业可以更好地利用其数据资产来通过协作机器学习平台虚拟化药物发现。另一方面,由于参与者的培训数据的意外泄漏,存在不可忽略的风险,因此,对于这样的平台,必须安全和隐私权。本文介绍了在药物发现的临床前阶段进行协作建模的隐私风险评估,以加快有前途的候选药物的选择。在最新推理攻击的简短分类法之后,我们采用并定制了几种基础情况。最后,我们用一些相关的隐私保护技术来描述和实验,以减轻此类攻击。
translated by 谷歌翻译
联合学习(FL)和分裂学习(SL)是两种新兴的协作学习方法,可能会极大地促进物联网(IoT)中无处不在的智能。联合学习使机器学习(ML)模型在本地培训的模型使用私人数据汇总为全球模型。分裂学习使ML模型的不同部分可以在学习框架中对不同工人进行协作培训。联合学习和分裂学习,每个学习都有独特的优势和各自的局限性,可能会相互补充,在物联网中无处不在的智能。因此,联合学习和分裂学习的结合最近成为一个活跃的研究领域,引起了广泛的兴趣。在本文中,我们回顾了联合学习和拆分学习方面的最新发展,并介绍了有关最先进技术的调查,该技术用于将这两种学习方法组合在基于边缘计算的物联网环境中。我们还确定了一些开放问题,并讨论了该领域未来研究的可能方向,希望进一步引起研究界对这个新兴领域的兴趣。
translated by 谷歌翻译