Differentially Private Stochastic Gradient Descent (DP-SGD) is a key method for applying privacy in the training of deep learning models. This applies isotropic Gaussian noise to gradients during training, which can perturb these gradients in any direction, damaging utility. Metric DP, however, can provide alternative mechanisms based on arbitrary metrics that might be more suitable. In this paper we apply \textit{directional privacy}, via a mechanism based on the von Mises-Fisher (VMF) distribution, to perturb gradients in terms of \textit{angular distance} so that gradient direction is broadly preserved. We show that this provides $\epsilon d$-privacy for deep learning training, rather than the $(\epsilon, \delta)$-privacy of the Gaussian mechanism; and that experimentally, on key datasets, the VMF mechanism can outperform the Gaussian in the utility-privacy trade-off.
translated by 谷歌翻译
梯度泄漏攻击被认为是深度学习中的邪恶隐私威胁之一,因为攻击者在迭代培训期间隐蔽了梯度更新,而不会影响模型培训质量,但又使用泄漏的梯度逐步重建敏感培训数据,具有高攻击成功率。虽然具有差异隐私的深度学习是发布具有差异隐私保障的深度学习模型的违法标准,但我们展示了具有固定隐私参数的差异私有算法易受梯度泄漏攻击的影响。本文调查了差异隐私(DP)的梯度泄漏弹性深度学习的替代方法。首先,我们分析了差异隐私的深度学习的现有实现,它使用固定噪声方差使用固定隐私参数将恒定噪声对所有层中的梯度注入恒定噪声。尽管提供了DP保证,但该方法遭受了低精度,并且很容易受到梯度泄漏攻击。其次,通过使用动态隐私参数,我们提出了一种梯度泄漏弹性深度学习方法,差异隐私保证。与导致恒定噪声方差导致的固定参数策略不同,不同的动态参数策略存在替代技术,以引入自适应噪声方差和自适应噪声注入,其与差别私有模型训练期间的梯度更新的趋势紧密对齐。最后,我们描述了四个互补指标来评估和比较替代方法。
translated by 谷歌翻译
Differential privacy is a strong notion for privacy that can be used to prove formal guarantees, in terms of a privacy budget, , about how much information is leaked by a mechanism. However, implementations of privacy-preserving machine learning often select large values of in order to get acceptable utility of the model, with little understanding of the impact of such choices on meaningful privacy. Moreover, in scenarios where iterative learning procedures are used, differential privacy variants that offer tighter analyses are used which appear to reduce the needed privacy budget but present poorly understood trade-offs between privacy and utility. In this paper, we quantify the impact of these choices on privacy in experiments with logistic regression and neural network models. Our main finding is that there is a huge gap between the upper bounds on privacy loss that can be guaranteed, even with advanced mechanisms, and the effective privacy loss that can be measured using current inference attacks. Current mechanisms for differentially private machine learning rarely offer acceptable utility-privacy trade-offs with guarantees for complex learning tasks: settings that provide limited accuracy loss provide meaningless privacy guarantees, and settings that provide strong privacy guarantees result in useless models.
translated by 谷歌翻译
深度神经网络(DNNS)铰接对大型数据集的可用性的最新成功;但是,对此类数据集的培训经常为敏感培训信息构成隐私风险。在本文中,我们的目标是探讨生成模型和梯度稀疏性的力量,并提出了一种可扩展的隐私保留生成模型数据标准。与标准展示隐私保留框架相比,允许教师对一维预测进行投票,在高维梯度向量上投票在隐私保存方面具有挑战性。随着需要尺寸减少技术,我们需要在(1)之间的改进之间导航精致的权衡空间,并进行SGD收敛的放缓。为了解决这一点,我们利用通信高效学习,并通过将顶-K压缩与相应的噪声注入机构相结合,提出一种新的噪声压缩和聚集方法TopAGG。理论上,我们证明了DataLens框架保证了其生成数据的差异隐私,并提供了其收敛性的分析。为了展示DataLens的实际使用情况,我们对不同数据集进行广泛的实验,包括Mnist,Fashion-Mnist和高维Celeba,并且我们表明,DataLens显着优于其他基线DP生成模型。此外,我们改进了所提出的Topagg方法,该方法是DP SGD培训的主要构建块之一,并表明它能够在大多数情况下实现比最先进的DP SGD方法更高的效用案件。我们的代码在HTTPS://github.com/ai-secure/datalens公开提供。
translated by 谷歌翻译
在联合学习(FL)中,数据不会在联合培训机器学习模型时留下个人设备。相反,这些设备与中央党(例如,公司)共享梯度。因为数据永远不会“离开”个人设备,因此FL作为隐私保留呈现。然而,最近显示这种保护是一个薄的外观,甚至是一种被动攻击者观察梯度可以重建各个用户的数据。在本文中,我们争辩说,事先工作仍然很大程度上低估了FL的脆弱性。这是因为事先努力专门考虑被动攻击者,这些攻击者是诚实但好奇的。相反,我们介绍了一个活跃和不诚实的攻击者,作为中央会,他们能够在用户计算模型渐变之前修改共享模型的权重。我们称之为修改的重量“陷阱重量”。我们的活跃攻击者能够完全恢复用户数据,并在接近零成本时:攻击不需要复杂的优化目标。相反,它利用了模型梯度的固有数据泄漏,并通过恶意改变共享模型的权重来放大这种效果。这些特异性使我们的攻击能够扩展到具有大型迷你批次数据的模型。如果来自现有工作的攻击者需要小时才能恢复单个数据点,我们的方法需要毫秒来捕获完全连接和卷积的深度神经网络的完整百分之批次数据。最后,我们考虑缓解。我们观察到,FL中的差异隐私(DP)的当前实现是有缺陷的,因为它们明确地信任中央会,并在增加DP噪音的关键任务,因此不提供对恶意中央党的保护。我们还考虑其他防御,并解释为什么它们类似地不足。它需要重新设计FL,为用户提供任何有意义的数据隐私。
translated by 谷歌翻译
我们审查在机器学习(ML)中使用差异隐私(DP)对隐私保护的使用。我们表明,在维护学习模型的准确性的驱动下,基于DP的ML实现非常宽松,以至于它们不提供DP的事前隐私保证。取而代之的是,他们提供的基本上是与传统(经常受到批评的)统计披露控制方法相似的噪声。由于缺乏正式的隐私保证,因此所提供的实际隐私水平必须经过实验评估,这很少进行。在这方面,我们提出的经验结果表明,ML中的标准反拟合技术可以比DP实现更好的实用性/隐私/效率权衡。
translated by 谷歌翻译
差异隐私被广泛接受为预防ML数据泄漏的事实方法,传统观念表明,它为隐私攻击提供了强烈的保护。但是,现有的语义保证DP专注于会员推理,这可能高估了对手的能力,并且当成员身份本身不敏感时不适用。在本文中,我们得出了针对正式威胁模型下培训数据重建攻击的DP机制的第一个语义保证。我们表明,两种截然不同的隐私会计方法 - Renyi差异隐私和Fisher信息泄漏 - 都提供了针对数据重建攻击的强烈语义保护。
translated by 谷歌翻译
如今,深度学习模型的所有者和开发人员必须考虑其培训数据的严格隐私保护规则,通常是人群来源且保留敏感信息。如今,深入学习模型执行隐私保证的最广泛采用的方法依赖于实施差异隐私的优化技术。根据文献,这种方法已被证明是针对多种模型的隐私攻击的成功防御,但其缺点是对模型的性能的实质性降级。在这项工作中,我们比较了差异私有的随机梯度下降(DP-SGD)算法与使用正则化技术的标准优化实践的有效性。我们分析了生成模型的实用程序,培训性能以及成员推理和模型反转攻击对学习模型的有效性。最后,我们讨论了差异隐私的缺陷和限制,并从经验上证明了辍学和L2型规范的卓越保护特性。
translated by 谷歌翻译
鉴于对机器学习模型的访问,可以进行对手重建模型的培训数据?这项工作从一个强大的知情对手的镜头研究了这个问题,他们知道除了一个之外的所有培训数据点。通过实例化混凝土攻击,我们表明重建此严格威胁模型中的剩余数据点是可行的。对于凸模型(例如Logistic回归),重建攻击很简单,可以以封闭形式导出。对于更常规的模型(例如神经网络),我们提出了一种基于训练的攻击策略,该攻击策略接收作为输入攻击的模型的权重,并产生目标数据点。我们展示了我们对MNIST和CIFAR-10训练的图像分类器的攻击的有效性,并系统地研究了标准机器学习管道的哪些因素影响重建成功。最后,我们从理论上调查了有多差异的隐私足以通过知情对手减轻重建攻击。我们的工作提供了有效的重建攻击,模型开发人员可以用于评估超出以前作品中考虑的一般设置中的个别点的记忆(例如,生成语言模型或访问培训梯度);它表明,标准模型具有存储足够信息的能力,以实现培训数据点的高保真重建;它表明,差异隐私可以成功减轻该参数制度中的攻击,其中公用事业劣化最小。
translated by 谷歌翻译
联合学习是一种协作机器学习,参与客户在本地处理他们的数据,仅与协作模型共享更新。这使得能够建立隐私意识的分布式机器学习模型等。目的是通过最大程度地减少一组客户本地存储的数据集的成本函数来优化统计模型的参数。这个过程使客户遇到了两个问题:私人信息的泄漏和模型的个性化缺乏。另一方面,随着分析数据的最新进步,人们对侵犯参与客户的隐私行为的关注激增。为了减轻这种情况,差异隐私及其变体是提供正式隐私保证的标准。客户通常代表非常异构的社区,并拥有非常多样化的数据。因此,与FL社区的最新重点保持一致,以为代表其多样性的用户建立个性化模型框架,这对于防止潜在威胁免受客户的敏感和个人信息而言也是至关重要的。 $ d $ - 私人是对地理位置可区分性的概括,即最近普及的位置隐私范式,它使用了一种基于公制的混淆技术,可保留原始数据的空间分布。为了解决保护客户隐私并允许个性化模型培训以增强系统的公平性和实用性的问题,我们提出了一种提供团体隐私性的方法在FL的框架下。我们为对现实世界数据集的适用性和实验验证提供了理论上的理由,以说明该方法的工作。
translated by 谷歌翻译
差异隐私(DP)已被出现为严格的形式主义,以推理可量化的隐私泄漏。在机器学习(ML)中,已采用DP限制推理/披露训练示例。在现有的工作中杠杆横跨ML管道,尽管隔离,通常专注于梯度扰动等机制。在本文中,我们展示了DP-util,DP整体实用分析框架,跨越ML管道,重点是输入扰动,客观扰动,梯度扰动,输出扰动和预测扰动。在隐私敏感数据上给出ML任务,DP-Util使ML隐私从业者能够对DP在这五个扰动点中的影响,以模型公用事业丢失,隐私泄漏和真正透露的数量来测量DP的影响。训练样本。我们在视觉,医疗和金融数据集上使用两个代表性学习算法(Logistic回归和深神经网络)来评估DP-Uts,以防止会员资格推论攻击作为案例研究攻击。我们结果的一个亮点是,预测扰动一致地在所有数据集中始终如一地实现所有模型的最低实用损耗。在Logistic回归模型中,与其他扰动技术相比,客观扰动导致最低的隐私泄漏。对于深度神经网络,梯度扰动导致最低的隐私泄漏。此外,我们的结果揭示了记录的结果表明,由于隐私泄漏增加,差异私有模型揭示了更多数量的成员样本。总体而言,我们的研究结果表明,为了使使用的扰动机制有明智的决定,ML隐私从业者需要检查优化技术(凸与非凸),扰动机制,课程数量和隐私预算之间的动态。
translated by 谷歌翻译
Machine learning techniques based on neural networks are achieving remarkable results in a wide variety of domains. Often, the training of models requires large, representative datasets, which may be crowdsourced and contain sensitive information. The models should not expose private information in these datasets. Addressing this goal, we develop new algorithmic techniques for learning and a refined analysis of privacy costs within the framework of differential privacy. Our implementation and experiments demonstrate that we can train deep neural networks with non-convex objectives, under a modest privacy budget, and at a manageable cost in software complexity, training efficiency, and model quality. * Google.† OpenAI. Work done while at Google.
translated by 谷歌翻译
利用梯度泄漏以重建据称为私人培训数据,梯度反演攻击是神经网络协作学习的无处不在威胁。为了防止梯度泄漏而不会遭受模型绩效严重损失的情况,最近的工作提出了一个基于变化模型作为任意模型体系结构的扩展的隐私增强模块(预编码)。在这项工作中,我们研究了预言对梯度反转攻击的影响,以揭示其基本的工作原理。我们表明,各变化建模会引起预科及其随后的层梯度的随机性,从而阻止梯度攻击的收敛性。通过在攻击优化期间有目的地省略那些随机梯度,我们制定了一种可以禁用Precode隐私保护效果的攻击。为了确保对这种有针对性攻击的隐私保护,我们将部分扰动(PPP)提出,作为变异建模和部分梯度扰动的战略组合。我们对四个开创性模型架构和两个图像分类数据集进行了广泛的实证研究。我们发现所有架构都容易梯度泄漏,可以通过PPP预防。因此,我们表明我们的方法需要较小的梯度扰动才能有效地保留隐私而不会损害模型性能。
translated by 谷歌翻译
差异隐私(DP)提供了正式的隐私保证,以防止对手可以访问机器学习模型,从而从提取有关单个培训点的信息。最受欢迎的DP训练方法是差异私有随机梯度下降(DP-SGD),它通过在训练过程中注入噪声来实现这种保护。然而,以前的工作发现,DP-SGD通常会导致标准图像分类基准的性能显着降解。此外,一些作者假设DP-SGD在大型模型上固有地表现不佳,因为保留隐私所需的噪声规范与模型维度成正比。相反,我们证明了过度参数化模型上的DP-SGD可以比以前想象的要好得多。将仔细的超参数调整与简单技术结合起来,以确保信号传播并提高收敛速率,我们获得了新的SOTA,而没有额外数据的CIFAR-10,在81.4%的81.4%下(8,10^{ - 5}) - 使用40 -layer wide-Resnet,比以前的SOTA提高了71.7%。当对预训练的NFNET-F3进行微调时,我们在ImageNet(0.5,8*10^{ - 7})下达到了83.8%的TOP-1精度。此外,我们还在(8,8 \ cdot 10^{ - 7})下达到了86.7%的TOP-1精度,DP仅比当前的非私人SOTA仅4.3%。我们认为,我们的结果是缩小私人图像分类和非私有图像分类之间准确性差距的重要一步。
translated by 谷歌翻译
对协作学习的实证攻击表明,深度神经网络的梯度不仅可以披露训练数据的私有潜在属性,还可以用于重建原始数据。虽然先前的作品试图量化了梯度的隐私风险,但这些措施没有建立理论上对梯度泄漏的理解了解,而不是跨越攻击者的概括,并且不能完全解释通过实际攻击在实践中通过实证攻击观察到的内容。在本文中,我们介绍了理论上激励的措施,以量化攻击依赖和攻击无关方式的信息泄漏。具体而言,我们展示了$ \ mathcal {v} $ - 信息的适应,它概括了经验攻击成功率,并允许量化可以从任何所选择的攻击模型系列泄漏的信息量。然后,我们提出了独立的措施,只需要共享梯度,用于量化原始和潜在信息泄漏。我们的经验结果,六个数据集和四种流行型号,揭示了第一层的梯度包含最高量的原始信息,而(卷积)特征提取器层之后的(完全连接的)分类层包含最高的潜在信息。此外,我们展示了如何在训练期间诸如梯度聚集的技术如何减轻信息泄漏。我们的工作为更好的防御方式铺平了道路,例如基于层的保护或强聚合。
translated by 谷歌翻译
联合学习(FL)提供了一个有效的范式,可以共同培训分布式用户的数据的全球模型。由于本地培训数据来自可能不值得信赖的不同用户,因此一些研究表明,FL容易受到中毒攻击的影响。同时,为了保护本地用户的隐私,FL始终以差异性私人方式(DPFL)进行培训。因此,在本文中,我们问:我们是否可以利用DPFL的先天隐私权来提供对中毒攻击的认证鲁棒性?我们可以进一步改善FL的隐私以改善这种认证吗?我们首先研究了FL的用户级和实例级别的隐私,并提出了新的机制以获得改进的实例级隐私。然后,我们提供两个鲁棒性认证标准:两级DPFL的认证预测和认证攻击成本。从理论上讲,我们证明了DPFL在有限数量的对抗用户或实例下的认证鲁棒性。从经验上讲,我们进行了广泛的实验,以在对不同数据集的一系列攻击下验证我们的理论。我们表明,具有更严格的隐私保证的DPFL总是在认证攻击成本方面提供更强的鲁棒性认证,但是在隐私保护和公用事业损失之间的适当平衡下,获得了最佳认证预测。
translated by 谷歌翻译
Distributing machine learning predictors enables the collection of large-scale datasets while leaving sensitive raw data at trustworthy sites. We show that locally training support vector machines (SVMs) and computing their averages leads to a learning technique that is scalable to a large number of users, satisfies differential privacy, and is applicable to non-trivial tasks, such as CIFAR-10. For a large number of participants, communication cost is one of the main challenges. We achieve a low communication cost by requiring only a single invocation of an efficient secure multiparty summation protocol. By relying on state-of-the-art feature extractors (SimCLR), we are able to utilize differentially private convex learners for non-trivial tasks such as CIFAR-10. Our experimental results illustrate that for $1{,}000$ users with $50$ data points each, our scheme outperforms state-of-the-art scalable distributed learning methods (differentially private federated learning, short DP-FL) while requiring around $500$ times fewer communication costs: For CIFAR-10, we achieve a classification accuracy of $79.7\,\%$ for an $\varepsilon = 0.59$ while DP-FL achieves $57.6\,\%$. More generally, we prove learnability properties for the average of such locally trained models: convergence and uniform stability. By only requiring strongly convex, smooth, and Lipschitz-continuous objective functions, locally trained via stochastic gradient descent (SGD), we achieve a strong utility-privacy tradeoff.
translated by 谷歌翻译
Deep neural networks have strong capabilities of memorizing the underlying training data, which can be a serious privacy concern. An effective solution to this problem is to train models with differential privacy, which provides rigorous privacy guarantees by injecting random noise to the gradients. This paper focuses on the scenario where sensitive data are distributed among multiple participants, who jointly train a model through federated learning (FL), using both secure multiparty computation (MPC) to ensure the confidentiality of each gradient update, and differential privacy to avoid data leakage in the resulting model. A major challenge in this setting is that common mechanisms for enforcing DP in deep learning, which inject real-valued noise, are fundamentally incompatible with MPC, which exchanges finite-field integers among the participants. Consequently, most existing DP mechanisms require rather high noise levels, leading to poor model utility. Motivated by this, we propose Skellam mixture mechanism (SMM), an approach to enforce DP on models built via FL. Compared to existing methods, SMM eliminates the assumption that the input gradients must be integer-valued, and, thus, reduces the amount of noise injected to preserve DP. Further, SMM allows tight privacy accounting due to the nice composition and sub-sampling properties of the Skellam distribution, which are key to accurate deep learning with DP. The theoretical analysis of SMM is highly non-trivial, especially considering (i) the complicated math of differentially private deep learning in general and (ii) the fact that the mixture of two Skellam distributions is rather complex, and to our knowledge, has not been studied in the DP literature. Extensive experiments on various practical settings demonstrate that SMM consistently and significantly outperforms existing solutions in terms of the utility of the resulting model.
translated by 谷歌翻译
联合学习使多个用户能够通过共享其模型更新(渐变)来构建联合模型,而其原始数据在其设备上保持本地。与常见的信念相比,这提供了隐私福利,我们在共享渐变时,我们在这里增加了隐私风险的最新结果。具体而言,我们调查梯度(LLG)的标签泄漏,这是一种新建攻击,从他们的共享梯度提取用户培训数据的标签。该攻击利用梯度的方向和幅度来确定任何标签的存在或不存在。 LLG简单且有效,能够泄漏由标签表示的电位敏感信息,并缩放到任意批量尺寸和多个类别。在数学上以及经验上证明了不同设置下攻击的有效性。此外,经验结果表明,LLG在模型训练的早期阶段以高精度成功提取标签。我们还讨论了针对这种泄漏的不同防御机制。我们的研究结果表明,梯度压缩是减轻攻击的实用技术。
translated by 谷歌翻译
虽然在巨大数据上培训的机器学习模型导致了几个领域的断路器,但由于限制数据的访问,他们在隐私敏感域中的部署仍然有限。在私有数据上具有隐私约束的生成模型可以避免此挑战,而是提供对私有数据的间接访问。我们提出DP-Sinkhorn,一种新的最优传输的生成方法,用于从具有差异隐私的私有数据学习数据分布。 DP-Sinkhorn以差别私人方式在模型和数据之间的模型和数据之间最小化陷阱的分歧,将计算上有效的近似值,并在模型和数据之间使用新技术来控制梯度估计的偏差差异的偏差折衷。与现有的培训方法不同,差异私人生成模型主要基于生成的对抗网络,我们不依赖于对抗性目标,这令人惊叹的难以优化,特别是在隐私约束所施加的噪声存在下。因此,DP-Sinkhorn易于训练和部署。通过实验,我们改进了多种图像建模基准的最先进,并显示了差异私有的信息RGB图像综合。项目页面:https://nv-tlabs.github.io/dp-sinkhorn。
translated by 谷歌翻译