联合学习已被提议作为隐私的机器学习框架,该框架使多个客户能够在不共享原始数据的情况下进行协作。但是,在此框架中,设计并不能保证客户隐私保护。先前的工作表明,联邦学习中的梯度共享策略可能容易受到数据重建攻击的影响。但是,实际上,考虑到高沟通成本或由于增强隐私要求,客户可能不会传输原始梯度。实证研究表明,梯度混淆,包括通过梯度噪声注入和通过梯度压缩的无意化混淆的意图混淆,可以提供更多的隐私保护,以防止重建攻击。在这项工作中,我们提出了一个针对联合学习中图像分类任务的新数据重建攻击框架。我们表明,通常采用的梯度后处理程序,例如梯度量化,梯度稀疏和梯度扰动,可能会在联合学习中具有错误的安全感。与先前的研究相反,我们认为不应将隐私增强视为梯度压缩的副产品。此外,我们在提出的框架下设计了一种新方法,以在语义层面重建图像。我们量化语义隐私泄漏,并根据图像相似性分数进行比较。我们的比较挑战了文献中图像数据泄漏评估方案。结果强调了在现有联合学习算法中重新审视和重新设计对客户数据的隐私保护机制的重要性。
translated by 谷歌翻译
利用梯度泄漏以重建据称为私人培训数据,梯度反演攻击是神经网络协作学习的无处不在威胁。为了防止梯度泄漏而不会遭受模型绩效严重损失的情况,最近的工作提出了一个基于变化模型作为任意模型体系结构的扩展的隐私增强模块(预编码)。在这项工作中,我们研究了预言对梯度反转攻击的影响,以揭示其基本的工作原理。我们表明,各变化建模会引起预科及其随后的层梯度的随机性,从而阻止梯度攻击的收敛性。通过在攻击优化期间有目的地省略那些随机梯度,我们制定了一种可以禁用Precode隐私保护效果的攻击。为了确保对这种有针对性攻击的隐私保护,我们将部分扰动(PPP)提出,作为变异建模和部分梯度扰动的战略组合。我们对四个开创性模型架构和两个图像分类数据集进行了广泛的实证研究。我们发现所有架构都容易梯度泄漏,可以通过PPP预防。因此,我们表明我们的方法需要较小的梯度扰动才能有效地保留隐私而不会损害模型性能。
translated by 谷歌翻译
近年来,分布式机器学习已被广​​泛用于解决大型且复杂的数据集问题。因此,分布式学习的安全也引起了学术界和行业的越来越多的注意。在这种情况下,联合学习(FL)是通过在本地维护私人培训数据来开发为“安全”分布式学习的,并且仅在之间进行公共模型梯度。但是,迄今为止,为此过程提出了各种梯度泄漏攻击,并证明它是不安全的。例如,共享这些攻击的常见缺点:它们需要过多的辅助信息,例如模型权重,优化者和某些超参数(例如,学习率),在实际情况下很难获得。此外,许多现有算法避免在FL中传输模型梯度,然后转向发送模型权重,例如FedAvg,但很少有人认为其安全性违反。在本文中,我们提出了两个新颖的框架,以证明传输模型权重还可能在FL方案下泄露客户端局部数据,即(DLM和DLM+)。此外,进行了许多实验,以说明我们的攻击框架的效果和普遍性。在本文的最后,我们还向拟议的攻击介绍了两个防御,并评估了它们的保护效果。全面地,只有一些适当的自定义,拟议的攻击和防御方案也可以应用于一般分布式学习方案。
translated by 谷歌翻译
联合学习(FL)是一种保护隐私的范式,其中多个参与者共同解决机器学习问题而无需共享原始数据。与传统的分布式学习不同,FL的独特特征是统计异质性,即,跨参与者的数据分布彼此不同。同时,神经网络解释的最新进展已广泛使用神经切线核(NTK)进行收敛分析。在本文中,我们提出了一个新颖的FL范式,该范式由NTK框架赋予了能力。该范式通过传输比常规FL范式更具表现力的更新数据来解决统计异质性的挑战。具体而言,通过样本的雅各布矩阵,而不是模型的权重/梯度,由参与者上传。然后,服务器构建了经验内核矩阵,以更新全局模型,而无需明确执行梯度下降。我们进一步开发了一种具有提高沟通效率和增强隐私性的变体。数值结果表明,与联邦平均相比,所提出的范式可以达到相同的精度,同时将通信弹的数量减少数量级。
translated by 谷歌翻译
联邦学习(FL)提供了有希望的分布式学习范式,因为它试图通过不共享其私人培训数据来保护用户隐私。但是,最近的研究表明,FL容易受到模型反转攻击的影响,该攻击可以通过窃听共享梯度来重建用户的私人数据。现有的防御解决方案无法在更强烈的攻击中生存,并且在隐私和绩效之间表现不佳。在本文中,我们提出了一种直接而有效的防御策略,基于与隐藏数据相混淆敏感数据的梯度。具体而言,我们在迷你批次中更改一些样品,以模仿梯度水平的敏感数据。使用梯度投影技术,我们的方法试图在不牺牲FL性能的情况下模糊敏感数据。我们广泛的评估表明,与其他防御能力相比,我们的技术在保留FL性能的同时提供了最高水平的保护。我们的源代码位于存储库中。
translated by 谷歌翻译
数据隐私已成为机器学习(ML)日益重要的问题,其中许多方法已经发展以解决这一挑战,例如,这一挑战加密(同性恋加密(HE),差异隐私(DP)等)和协作培训(安全多方计算(MPC),分布式学习和联合学习(FL))。这些技术特别侧重于数据加密或安全本地计算。他们将中间信息转移到第三方以计算最终结果。梯度交换通常被认为是在深度学习(DL)中协同训练鲁棒模型的安全方式。然而,最近的研究表明,可以从共享梯度恢复敏感信息。特别地,生成的对抗网络(GaN)已显示有效地恢复这些信息。然而,基于GaN的技术需要附加信息,例如类标签,这些标签通常不可用才能获得隐私保留的学习。在本文中,我们表明,在FL系统中,仅通过我们所提出的生成回归神经网络(GRNN)只能通过共享梯度全额从共享梯度容易地恢复基于图像的隐私数据。我们制定攻击是回归问题,并通过最小化梯度之间的距离来优化生成模型的两个分支。我们在几种图像分类任务上评估我们的方法。结果说明我们所提出的GNN优于最先进的方法,具有更好的稳定性,更强的鲁棒性和更高的准确性。它对全球流动模型也没有收敛要求。此外,我们使用面部重新识别来展示信息泄漏。在这项工作中还讨论了一些防御策略。
translated by 谷歌翻译
Federated learning is a collaborative method that aims to preserve data privacy while creating AI models. Current approaches to federated learning tend to rely heavily on secure aggregation protocols to preserve data privacy. However, to some degree, such protocols assume that the entity orchestrating the federated learning process (i.e., the server) is not fully malicious or dishonest. We investigate vulnerabilities to secure aggregation that could arise if the server is fully malicious and attempts to obtain access to private, potentially sensitive data. Furthermore, we provide a method to further defend against such a malicious server, and demonstrate effectiveness against known attacks that reconstruct data in a federated learning setting.
translated by 谷歌翻译
梯度反转攻击(或从梯度的输入恢复)是对联合学习的安全和隐私保存的新出现威胁,由此,协议中的恶意窃听者或参与者可以恢复(部分)客户的私有数据。本文评估了现有的攻击和防御。我们发现一些攻击对设置产生了强烈的假设。放松这种假设可以大大削弱这些攻击。然后,我们评估三种拟议的防御机制对梯度反转攻击的好处。我们展示了这些防御方法的隐私泄漏和数据效用的权衡,并发现以适当的方式将它们与它们相结合使得攻击较低,即使在原始的强烈假设下。我们还估计每个评估的防御下单个图像的端到端恢复的计算成本。我们的研究结果表明,目前可以针对较小的数据公用事业损失来捍卫最先进的攻击,如潜在策略的列表中总结。我们的代码可用于:https://github.com/princeton-sysml/gradattack。
translated by 谷歌翻译
最近的攻击表明,可以从FEDSGD更新中恢复用户数据,从而破坏隐私。但是,这些攻击具有有限的实际相关性,因为联邦学习通常使用FedAvg算法。与FEDSGD相比,从FedAvg更新中恢复数据要困难得多,因为:(i)更新是在未观察到的中间网络权重计算的,(ii)使用大量批次,并且(iii)标签和网络权重在客户端上同时不同脚步。在这项工作中,我们提出了一项新的基于优化的攻击,该攻击通过解决上述挑战来成功攻击FedAvg。首先,我们使用自动差异化解决了优化问题,该分化迫使客户端更新的仿真,该更新生成了恢复的标签和输入的未观察到的参数,以匹配接收到的客户端更新。其次,我们通过将来自不同时期的图像与置换不变的先验联系起来来解决大量批处理。第三,我们通过在每个FedAvg步骤中估算现有FEDSGD攻击的参数来恢复标签。在流行的女性数据集中,我们证明,平均而言,我们从现实的FedAvg更新中成功地恢复了> 45%的图像,该更新是在10个本地时期计算出的10批批次,每个批次,每个图像,每张5张图像,而使用基线仅<10%。我们的发现表明,基于FedAvg的许多现实世界联合学习实现非常脆弱。
translated by 谷歌翻译
联合学习使多个用户能够通过共享其模型更新(渐变)来构建联合模型,而其原始数据在其设备上保持本地。与常见的信念相比,这提供了隐私福利,我们在共享渐变时,我们在这里增加了隐私风险的最新结果。具体而言,我们调查梯度(LLG)的标签泄漏,这是一种新建攻击,从他们的共享梯度提取用户培训数据的标签。该攻击利用梯度的方向和幅度来确定任何标签的存在或不存在。 LLG简单且有效,能够泄漏由标签表示的电位敏感信息,并缩放到任意批量尺寸和多个类别。在数学上以及经验上证明了不同设置下攻击的有效性。此外,经验结果表明,LLG在模型训练的早期阶段以高精度成功提取标签。我们还讨论了针对这种泄漏的不同防御机制。我们的研究结果表明,梯度压缩是减轻攻击的实用技术。
translated by 谷歌翻译
最近的研究表明,训练样本可以从梯度中回收,这些梯度称为梯度反转(Gradinv)攻击。但是,仍然缺乏广泛的调查,涵盖了最近的进步和对该问题的彻底分析。在本文中,我们介绍了有关Gradinv的全面调查,旨在总结尖端研究并扩大不同领域的视野。首先,我们通过将现有攻击描述为两个范式:基于迭代和递归的攻击,提出了Gradinv攻击的分类法。特别是,我们从基于迭代的攻击中挖掘出一些关键成分,包括数据初始化,模型培训和梯度匹配。其次,我们总结了针对Gradinv攻击的新兴防御策略。我们发现这些方法侧重于三种观点,涵盖了数据的晦涩,模型改进和梯度保护。最后,我们讨论了一些有希望的方向和开放问题,以进行进一步研究。
translated by 谷歌翻译
Deep learning (DL) methods have been widely applied to anomaly-based network intrusion detection system (NIDS) to detect malicious traffic. To expand the usage scenarios of DL-based methods, the federated learning (FL) framework allows multiple users to train a global model on the basis of respecting individual data privacy. However, it has not yet been systematically evaluated how robust FL-based NIDSs are against existing privacy attacks under existing defenses. To address this issue, we propose two privacy evaluation metrics designed for FL-based NIDSs, including (1) privacy score that evaluates the similarity between the original and recovered traffic features using reconstruction attacks, and (2) evasion rate against NIDSs using Generative Adversarial Network-based adversarial attack with the reconstructed benign traffic. We conduct experiments to show that existing defenses provide little protection that the corresponding adversarial traffic can even evade the SOTA NIDS Kitsune. To defend against such attacks and build a more robust FL-based NIDS, we further propose FedDef, a novel optimization-based input perturbation defense strategy with theoretical guarantee. It achieves both high utility by minimizing the gradient distance and strong privacy protection by maximizing the input distance. We experimentally evaluate four existing defenses on four datasets and show that our defense outperforms all the baselines in terms of privacy protection with up to 7 times higher privacy score, while maintaining model accuracy loss within 3% under optimal parameter combination.
translated by 谷歌翻译
Differentially private federated learning (DP-FL) has received increasing attention to mitigate the privacy risk in federated learning. Although different schemes for DP-FL have been proposed, there is still a utility gap. Employing central Differential Privacy in FL (CDP-FL) can provide a good balance between the privacy and model utility, but requires a trusted server. Using Local Differential Privacy for FL (LDP-FL) does not require a trusted server, but suffers from lousy privacy-utility trade-off. Recently proposed shuffle DP based FL has the potential to bridge the gap between CDP-FL and LDP-FL without a trusted server; however, there is still a utility gap when the number of model parameters is large. In this work, we propose OLIVE, a system that combines the merits from CDP-FL and LDP-FL by leveraging Trusted Execution Environment (TEE). Our main technical contributions are the analysis and countermeasures against the vulnerability of TEE in OLIVE. Firstly, we theoretically analyze the memory access pattern leakage of OLIVE and find that there is a risk for sparsified gradients, which is common in FL. Secondly, we design an inference attack to understand how the memory access pattern could be linked to the training data. Thirdly, we propose oblivious yet efficient algorithms to prevent the memory access pattern leakage in OLIVE. Our experiments on real-world data demonstrate that OLIVE is efficient even when training a model with hundreds of thousands of parameters and effective against side-channel attacks on TEE.
translated by 谷歌翻译
Federated Learning是一个私人设计的分布式学习范式,客户在中央服务器汇总本地更新以计算全局模型之前,客户在自己的数据上训练本地模型。根据所使用的聚合方法,本地更新是本地学习模型的梯度或权重。最近的重建攻击对单个MiniBatch的梯度更新应用了梯度反演优化,以重建客户在培训期间使用的私人数据。由于最新的重建攻击仅关注单个更新,因此忽略了现实的对抗场景,例如跨多个小型批次训练的多个更新和更新。一些研究考虑了一个更具挑战性的对抗场景,在该场景中,只能根据多个迷你批次进行模型更新,并且可以观察到计算昂贵的模拟,以解开每个本地步骤的基本样本。在本文中,我们提出了一种新型的近似梯度反转攻击,可有效,有效地重建来自模型或梯度更新的图像,以及跨多个时期。简而言之,agic(i)近似于模型更新中使用的训练样本的梯度更新,以避免昂贵的仿真程序,(ii)利用从多个时期收集的梯度/模型更新,(iii)将权重增加到相对于层的重量增加重建质量的神经网络结构。我们在三个数据集CIFAR-10,CIFAR-100和Imagenet上广泛评估AGIC。我们的结果表明,与两种代表性的最先进的梯度反演攻击相比,AGIC将峰值信噪比(PSNR)提高了50%。此外,AGIC的速度比基于最新的模拟攻击快,例如,在模型更新之间使用8个本地步骤攻击FedAvg时,它的速度快5倍。
translated by 谷歌翻译
Federated learning allows collaborative workers to solve a machine learning problem while preserving data privacy. Recent studies have tackled various challenges in federated learning, but the joint optimization of communication overhead, learning reliability, and deployment efficiency is still an open problem. To this end, we propose a new scheme named federated learning via plurality vote (FedVote). In each communication round of FedVote, workers transmit binary or ternary weights to the server with low communication overhead. The model parameters are aggregated via weighted voting to enhance the resilience against Byzantine attacks. When deployed for inference, the model with binary or ternary weights is resource-friendly to edge devices. We show that our proposed method can reduce quantization error and converges faster compared with the methods directly quantizing the model updates.
translated by 谷歌翻译
恶意攻击者和诚实但有趣的服务器可以从联合学习中上传的梯度中窃取私人客户数据。尽管当前的保护方法(例如,添加剂同构密码系统)可以保证联合学习系统的安全性,但它们带来了额外的计算和通信成本。为了减轻成本,我们提出了\ texttt {fedage}框架,该框架使服务器能够在编码域中汇总梯度,而无需访问任何单个客户端的原始梯度。因此,\ texttt {fedage}可以防止好奇的服务器逐渐窃取,同时保持相同的预测性能而没有额外的通信成本。此外,从理论上讲,我们证明所提出的编码编码框架是具有差异隐私的高斯机制。最后,我们在几个联合设置下评估\ texttt {fedage},结果证明了提出的框架的功效。
translated by 谷歌翻译
对协作学习的实证攻击表明,深度神经网络的梯度不仅可以披露训练数据的私有潜在属性,还可以用于重建原始数据。虽然先前的作品试图量化了梯度的隐私风险,但这些措施没有建立理论上对梯度泄漏的理解了解,而不是跨越攻击者的概括,并且不能完全解释通过实际攻击在实践中通过实证攻击观察到的内容。在本文中,我们介绍了理论上激励的措施,以量化攻击依赖和攻击无关方式的信息泄漏。具体而言,我们展示了$ \ mathcal {v} $ - 信息的适应,它概括了经验攻击成功率,并允许量化可以从任何所选择的攻击模型系列泄漏的信息量。然后,我们提出了独立的措施,只需要共享梯度,用于量化原始和潜在信息泄漏。我们的经验结果,六个数据集和四种流行型号,揭示了第一层的梯度包含最高量的原始信息,而(卷积)特征提取器层之后的(完全连接的)分类层包含最高的潜在信息。此外,我们展示了如何在训练期间诸如梯度聚集的技术如何减轻信息泄漏。我们的工作为更好的防御方式铺平了道路,例如基于层的保护或强聚合。
translated by 谷歌翻译
联邦学习是一种培训机器学习模型而不共享培训数据的既定方法。但是,最近的工作表明,它不能保证数据隐私,因为共享梯度仍然可以泄漏敏感信息。为了将渐变泄漏问题正式化,我们提出了一种理论框架,首次对贝叶斯最佳对手被扣除作为优化问题的理论框架。我们证明现有的泄漏攻击可以看作是对输入数据和梯度的概率分布的不同假设的这种最佳对手的近似。我们的实验证实了贝叶斯最佳对手的有效性,当它具有潜在的潜在分布时。此外,我们的实验评估表明,几种现有的启发式防御对于更强的攻击无效,特别是在培训过程中。因此,我们的研究结果表明,建设更有效的防御和他们的评价仍然是一个公开问题。
translated by 谷歌翻译
在联合学习(FL)中,数据不会在联合培训机器学习模型时留下个人设备。相反,这些设备与中央党(例如,公司)共享梯度。因为数据永远不会“离开”个人设备,因此FL作为隐私保留呈现。然而,最近显示这种保护是一个薄的外观,甚至是一种被动攻击者观察梯度可以重建各个用户的数据。在本文中,我们争辩说,事先工作仍然很大程度上低估了FL的脆弱性。这是因为事先努力专门考虑被动攻击者,这些攻击者是诚实但好奇的。相反,我们介绍了一个活跃和不诚实的攻击者,作为中央会,他们能够在用户计算模型渐变之前修改共享模型的权重。我们称之为修改的重量“陷阱重量”。我们的活跃攻击者能够完全恢复用户数据,并在接近零成本时:攻击不需要复杂的优化目标。相反,它利用了模型梯度的固有数据泄漏,并通过恶意改变共享模型的权重来放大这种效果。这些特异性使我们的攻击能够扩展到具有大型迷你批次数据的模型。如果来自现有工作的攻击者需要小时才能恢复单个数据点,我们的方法需要毫秒来捕获完全连接和卷积的深度神经网络的完整百分之批次数据。最后,我们考虑缓解。我们观察到,FL中的差异隐私(DP)的当前实现是有缺陷的,因为它们明确地信任中央会,并在增加DP噪音的关键任务,因此不提供对恶意中央党的保护。我们还考虑其他防御,并解释为什么它们类似地不足。它需要重新设计FL,为用户提供任何有意义的数据隐私。
translated by 谷歌翻译
在联邦学习方案中,多方共同从其各自的数据中学习模型,有两个相互矛盾的目标是选择适当的算法。一方面,必须在存在\ textit {semi-honest}合作伙伴的情况下尽可能保持私人和敏感的培训数据,而另一方面,必须在不同方之间交换一定数量的信息学习实用程序。这样的挑战要求采用隐私的联合学习解决方案,该解决方案最大程度地提高了学习模型的效用,并维护参与各方的私人数据的可证明的隐私保证。本文说明了一个一般框架,即a)从统一信息理论的角度来制定隐私损失和效用损失之间的权衡,而b)在包括随机化,包括随机性,包括随机的机制,包括随机性,,包括随机性,,包括随机性,,包括随机性,,包括随机性,,包括随机性,,包括随机性,,包括随机性,包括随机性,,使用稀疏性和同态加密。结果表明,一般而言\ textit {没有免费的午餐来进行隐私 - 私人权衡取舍},并且必须用一定程度的降级效用进行保存隐私。本文中说明的定量分析可以作为实用联合学习算法设计的指导。
translated by 谷歌翻译