近年来,分布式机器学习已被广​​泛用于解决大型且复杂的数据集问题。因此,分布式学习的安全也引起了学术界和行业的越来越多的注意。在这种情况下,联合学习(FL)是通过在本地维护私人培训数据来开发为“安全”分布式学习的,并且仅在之间进行公共模型梯度。但是,迄今为止,为此过程提出了各种梯度泄漏攻击,并证明它是不安全的。例如,共享这些攻击的常见缺点:它们需要过多的辅助信息,例如模型权重,优化者和某些超参数(例如,学习率),在实际情况下很难获得。此外,许多现有算法避免在FL中传输模型梯度,然后转向发送模型权重,例如FedAvg,但很少有人认为其安全性违反。在本文中,我们提出了两个新颖的框架,以证明传输模型权重还可能在FL方案下泄露客户端局部数据,即(DLM和DLM+)。此外,进行了许多实验,以说明我们的攻击框架的效果和普遍性。在本文的最后,我们还向拟议的攻击介绍了两个防御,并评估了它们的保护效果。全面地,只有一些适当的自定义,拟议的攻击和防御方案也可以应用于一般分布式学习方案。
translated by 谷歌翻译
联邦学习(FL)提供了有希望的分布式学习范式,因为它试图通过不共享其私人培训数据来保护用户隐私。但是,最近的研究表明,FL容易受到模型反转攻击的影响,该攻击可以通过窃听共享梯度来重建用户的私人数据。现有的防御解决方案无法在更强烈的攻击中生存,并且在隐私和绩效之间表现不佳。在本文中,我们提出了一种直接而有效的防御策略,基于与隐藏数据相混淆敏感数据的梯度。具体而言,我们在迷你批次中更改一些样品,以模仿梯度水平的敏感数据。使用梯度投影技术,我们的方法试图在不牺牲FL性能的情况下模糊敏感数据。我们广泛的评估表明,与其他防御能力相比,我们的技术在保留FL性能的同时提供了最高水平的保护。我们的源代码位于存储库中。
translated by 谷歌翻译
联合学习已被提议作为隐私的机器学习框架,该框架使多个客户能够在不共享原始数据的情况下进行协作。但是,在此框架中,设计并不能保证客户隐私保护。先前的工作表明,联邦学习中的梯度共享策略可能容易受到数据重建攻击的影响。但是,实际上,考虑到高沟通成本或由于增强隐私要求,客户可能不会传输原始梯度。实证研究表明,梯度混淆,包括通过梯度噪声注入和通过梯度压缩的无意化混淆的意图混淆,可以提供更多的隐私保护,以防止重建攻击。在这项工作中,我们提出了一个针对联合学习中图像分类任务的新数据重建攻击框架。我们表明,通常采用的梯度后处理程序,例如梯度量化,梯度稀疏和梯度扰动,可能会在联合学习中具有错误的安全感。与先前的研究相反,我们认为不应将隐私增强视为梯度压缩的副产品。此外,我们在提出的框架下设计了一种新方法,以在语义层面重建图像。我们量化语义隐私泄漏,并根据图像相似性分数进行比较。我们的比较挑战了文献中图像数据泄漏评估方案。结果强调了在现有联合学习算法中重新审视和重新设计对客户数据的隐私保护机制的重要性。
translated by 谷歌翻译
最近的攻击表明,可以从FEDSGD更新中恢复用户数据,从而破坏隐私。但是,这些攻击具有有限的实际相关性,因为联邦学习通常使用FedAvg算法。与FEDSGD相比,从FedAvg更新中恢复数据要困难得多,因为:(i)更新是在未观察到的中间网络权重计算的,(ii)使用大量批次,并且(iii)标签和网络权重在客户端上同时不同脚步。在这项工作中,我们提出了一项新的基于优化的攻击,该攻击通过解决上述挑战来成功攻击FedAvg。首先,我们使用自动差异化解决了优化问题,该分化迫使客户端更新的仿真,该更新生成了恢复的标签和输入的未观察到的参数,以匹配接收到的客户端更新。其次,我们通过将来自不同时期的图像与置换不变的先验联系起来来解决大量批处理。第三,我们通过在每个FedAvg步骤中估算现有FEDSGD攻击的参数来恢复标签。在流行的女性数据集中,我们证明,平均而言,我们从现实的FedAvg更新中成功地恢复了> 45%的图像,该更新是在10个本地时期计算出的10批批次,每个批次,每个图像,每张5张图像,而使用基线仅<10%。我们的发现表明,基于FedAvg的许多现实世界联合学习实现非常脆弱。
translated by 谷歌翻译
Federated Learning是一个私人设计的分布式学习范式,客户在中央服务器汇总本地更新以计算全局模型之前,客户在自己的数据上训练本地模型。根据所使用的聚合方法,本地更新是本地学习模型的梯度或权重。最近的重建攻击对单个MiniBatch的梯度更新应用了梯度反演优化,以重建客户在培训期间使用的私人数据。由于最新的重建攻击仅关注单个更新,因此忽略了现实的对抗场景,例如跨多个小型批次训练的多个更新和更新。一些研究考虑了一个更具挑战性的对抗场景,在该场景中,只能根据多个迷你批次进行模型更新,并且可以观察到计算昂贵的模拟,以解开每个本地步骤的基本样本。在本文中,我们提出了一种新型的近似梯度反转攻击,可有效,有效地重建来自模型或梯度更新的图像,以及跨多个时期。简而言之,agic(i)近似于模型更新中使用的训练样本的梯度更新,以避免昂贵的仿真程序,(ii)利用从多个时期收集的梯度/模型更新,(iii)将权重增加到相对于层的重量增加重建质量的神经网络结构。我们在三个数据集CIFAR-10,CIFAR-100和Imagenet上广泛评估AGIC。我们的结果表明,与两种代表性的最先进的梯度反演攻击相比,AGIC将峰值信噪比(PSNR)提高了50%。此外,AGIC的速度比基于最新的模拟攻击快,例如,在模型更新之间使用8个本地步骤攻击FedAvg时,它的速度快5倍。
translated by 谷歌翻译
联合学习(FL)旨在通过使客户能够在不共享其私有数据的情况下协作构建机器学习模型来保护数据隐私。然而,最近的作品表明FL容易受到基于梯度的数据恢复攻击。保存技术的品种已经利用,以进一步提升FL的隐私。尽管如此,它们的计算或通信昂贵(例如,同态加密)或遭受精密损失(例如,差异隐私)。在这项工作中,我们提出了\ textsc {fedcg},一个新颖的\下划线{fed} erated学习方法,它利用\下划线{c} onditional \下划线{g}良好的对手网络来实现高级隐私保护,同时仍然保持竞争模型表现。更具体地说,\ textsc {fedcg}将每个客户端的本地网络分解为私有提取器和公共分类器,并保留本地提取器保护隐私。而不是暴露作为隐私泄漏的罪魁祸首的提取器,而是将客户的生成器与服务器共享,以聚合旨在增强客户端网络性能的公共知识。广泛的实验表明,与基线FL方法相比,\ TextSc {FEDCG}可以实现竞争模型性能,数值隐私分析表明\ TextSC {FEDCG}具有高级别的隐私保存能力。
translated by 谷歌翻译
数据隐私已成为机器学习(ML)日益重要的问题,其中许多方法已经发展以解决这一挑战,例如,这一挑战加密(同性恋加密(HE),差异隐私(DP)等)和协作培训(安全多方计算(MPC),分布式学习和联合学习(FL))。这些技术特别侧重于数据加密或安全本地计算。他们将中间信息转移到第三方以计算最终结果。梯度交换通常被认为是在深度学习(DL)中协同训练鲁棒模型的安全方式。然而,最近的研究表明,可以从共享梯度恢复敏感信息。特别地,生成的对抗网络(GaN)已显示有效地恢复这些信息。然而,基于GaN的技术需要附加信息,例如类标签,这些标签通常不可用才能获得隐私保留的学习。在本文中,我们表明,在FL系统中,仅通过我们所提出的生成回归神经网络(GRNN)只能通过共享梯度全额从共享梯度容易地恢复基于图像的隐私数据。我们制定攻击是回归问题,并通过最小化梯度之间的距离来优化生成模型的两个分支。我们在几种图像分类任务上评估我们的方法。结果说明我们所提出的GNN优于最先进的方法,具有更好的稳定性,更强的鲁棒性和更高的准确性。它对全球流动模型也没有收敛要求。此外,我们使用面部重新识别来展示信息泄漏。在这项工作中还讨论了一些防御策略。
translated by 谷歌翻译
恶意攻击者和诚实但有趣的服务器可以从联合学习中上传的梯度中窃取私人客户数据。尽管当前的保护方法(例如,添加剂同构密码系统)可以保证联合学习系统的安全性,但它们带来了额外的计算和通信成本。为了减轻成本,我们提出了\ texttt {fedage}框架,该框架使服务器能够在编码域中汇总梯度,而无需访问任何单个客户端的原始梯度。因此,\ texttt {fedage}可以防止好奇的服务器逐渐窃取,同时保持相同的预测性能而没有额外的通信成本。此外,从理论上讲,我们证明所提出的编码编码框架是具有差异隐私的高斯机制。最后,我们在几个联合设置下评估\ texttt {fedage},结果证明了提出的框架的功效。
translated by 谷歌翻译
Federated learning seeks to address the issue of isolated data islands by making clients disclose only their local training models. However, it was demonstrated that private information could still be inferred by analyzing local model parameters, such as deep neural network model weights. Recently, differential privacy has been applied to federated learning to protect data privacy, but the noise added may degrade the learning performance much. Typically, in previous work, training parameters were clipped equally and noises were added uniformly. The heterogeneity and convergence of training parameters were simply not considered. In this paper, we propose a differentially private scheme for federated learning with adaptive noise (Adap DP-FL). Specifically, due to the gradient heterogeneity, we conduct adaptive gradient clipping for different clients and different rounds; due to the gradient convergence, we add decreasing noises accordingly. Extensive experiments on real-world datasets demonstrate that our Adap DP-FL outperforms previous methods significantly.
translated by 谷歌翻译
联邦学习(FL)引起了人们对在存储在多个用户中的数据中启用隐私的机器学习的兴趣,同时避免将数据移动到偏离设备上。但是,尽管数据永远不会留下用户的设备,但仍然无法保证隐私,因为用户培训数据的重大计算以训练有素的本地模型的形式共享。最近,这些本地模型通过不同的隐私攻击(例如模型反演攻击)构成了实质性的隐私威胁。作为一种补救措施,通过保证服务器只能学习全局聚合模型更新,而不是单个模型更新,从而开发了安全汇总(SA)作为保护佛罗里达隐私的框架。尽管SA确保没有泄漏有关单个模型更新超出汇总模型更新的其他信息,但对于SA实际上可以提供多少私密性fl,没有正式的保证;由于有关单个数据集的信息仍然可以通过在服务器上计算的汇总模型泄漏。在这项工作中,我们对使用SA的FL的正式隐私保证进行了首次分析。具体而言,我们使用共同信息(MI)作为定量度量,并在每个用户数据集的信息上可以通过汇总的模型更新泄漏有关多少信息。当使用FEDSGD聚合算法时,我们的理论界限表明,隐私泄漏量随着SA参与FL的用户数量而线性减少。为了验证我们的理论界限,我们使用MI神经估计量来凭经验评估MNIST和CIFAR10数据集的不同FL设置下的隐私泄漏。我们的实验验证了FEDSGD的理论界限,随着用户数量和本地批量的增长,隐私泄漏的减少,并且随着培训回合的数量,隐私泄漏的增加。
translated by 谷歌翻译
Federated Learning (FL) is pervasive in privacy-focused IoT environments since it enables avoiding privacy leakage by training models with gradients instead of data. Recent works show the uploaded gradients can be employed to reconstruct data, i.e., gradient leakage attacks, and several defenses are designed to alleviate the risk by tweaking the gradients. However, these defenses exhibit weak resilience against threatening attacks, as the effectiveness builds upon the unrealistic assumptions that deep neural networks are simplified as linear models. In this paper, without such unrealistic assumptions, we present a novel defense, called Refiner, instead of perturbing gradients, which refines ground-truth data to craft robust data that yields sufficient utility but with the least amount of privacy information, and then the gradients of robust data are uploaded. To craft robust data, Refiner promotes the gradients of critical parameters associated with robust data to close ground-truth ones while leaving the gradients of trivial parameters to safeguard privacy. Moreover, to exploit the gradients of trivial parameters, Refiner utilizes a well-designed evaluation network to steer robust data far away from ground-truth data, thereby alleviating privacy leakage risk. Extensive experiments across multiple benchmark datasets demonstrate the superior defense effectiveness of Refiner at defending against state-of-the-art threats.
translated by 谷歌翻译
Differentially private federated learning (DP-FL) has received increasing attention to mitigate the privacy risk in federated learning. Although different schemes for DP-FL have been proposed, there is still a utility gap. Employing central Differential Privacy in FL (CDP-FL) can provide a good balance between the privacy and model utility, but requires a trusted server. Using Local Differential Privacy for FL (LDP-FL) does not require a trusted server, but suffers from lousy privacy-utility trade-off. Recently proposed shuffle DP based FL has the potential to bridge the gap between CDP-FL and LDP-FL without a trusted server; however, there is still a utility gap when the number of model parameters is large. In this work, we propose OLIVE, a system that combines the merits from CDP-FL and LDP-FL by leveraging Trusted Execution Environment (TEE). Our main technical contributions are the analysis and countermeasures against the vulnerability of TEE in OLIVE. Firstly, we theoretically analyze the memory access pattern leakage of OLIVE and find that there is a risk for sparsified gradients, which is common in FL. Secondly, we design an inference attack to understand how the memory access pattern could be linked to the training data. Thirdly, we propose oblivious yet efficient algorithms to prevent the memory access pattern leakage in OLIVE. Our experiments on real-world data demonstrate that OLIVE is efficient even when training a model with hundreds of thousands of parameters and effective against side-channel attacks on TEE.
translated by 谷歌翻译
如今,信息技术的发展正在迅速增长。在大数据时代,个人信息的隐私更加明显。主要的挑战是找到一种方法来确保在发布和分析数据时不会披露敏感的个人信息。在信任的第三方数据策展人的假设上建立了集中式差异隐私。但是,这个假设在现实中并不总是正确的。作为一种新的隐私保护模型,当地的差异隐私具有相对强大的隐私保证。尽管联邦学习相对是一种用于分布式学习的隐私方法,但它仍然引入了各种隐私问题。为了避免隐私威胁并降低沟通成本,我们建议将联合学习和当地差异隐私与动量梯度下降整合在一起,以提高机器学习模型的性能。
translated by 谷歌翻译
联合学习使多个用户能够通过共享其模型更新(渐变)来构建联合模型,而其原始数据在其设备上保持本地。与常见的信念相比,这提供了隐私福利,我们在共享渐变时,我们在这里增加了隐私风险的最新结果。具体而言,我们调查梯度(LLG)的标签泄漏,这是一种新建攻击,从他们的共享梯度提取用户培训数据的标签。该攻击利用梯度的方向和幅度来确定任何标签的存在或不存在。 LLG简单且有效,能够泄漏由标签表示的电位敏感信息,并缩放到任意批量尺寸和多个类别。在数学上以及经验上证明了不同设置下攻击的有效性。此外,经验结果表明,LLG在模型训练的早期阶段以高精度成功提取标签。我们还讨论了针对这种泄漏的不同防御机制。我们的研究结果表明,梯度压缩是减轻攻击的实用技术。
translated by 谷歌翻译
最近的研究表明,私人培训数据可以通过分布式机器学习系统(例如联合学习)(如联合学习)(如FL)泄露。增加批量大小以使数据恢复复杂化,通常被视为防止数据泄漏的有希望的防御策略。在本文中,我们重新审视该防御前提,并提出了一种高级数据泄漏攻击,具有理论上的理由,以有效地从共享聚合渐变恢复批量数据。我们将所提出的方法称为垂直联合学习(Cafe)中的灾难性数据泄漏。与现有数据泄漏攻击相比,我们对垂直流程的广泛实验结果展示了CAFE的有效性,以提高数据恢复质量。我们还提出了减轻咖啡馆的实际对策。我们的结果表明,私人数据参与标准FL,特别是垂直情况,具有从训练梯度泄露的高风险。我们的分析意味着这些学习设置中的前所未有和实际的数据泄漏风险。我们的工作代码可在https://github.com/derafael/cafe上获得。
translated by 谷歌翻译
联邦学习〜(FL)最近引起了学术界和行业的越来越多的关注,其最终目标是在隐私和沟通限制下进行协作培训。现有的基于FL算法的现有迭代模型需要大量的通信回合,以获得良好的模型,这是由于不同客户之间的极为不平衡和非平衡的I.D数据分配。因此,我们建议FedDM从多个本地替代功能中构建全球培训目标,这使服务器能够获得对损失格局的更全球视野。详细说明,我们在每个客户端构建了合成数据集,以在本地匹配从原始数据到分发匹配的损失景观。与笨拙的模型权重相比,FedDM通过传输更多信息和较小的合成数据来降低通信回合并提高模型质量。我们对三个图像分类数据集进行了广泛的实验,结果表明,在效率和模型性能方面,我们的方法可以优于其他FL的实验。此外,我们证明,FedDM可以适应使用高斯机制来保护差异隐私,并在相同的隐私预算下训练更好的模型。
translated by 谷歌翻译
语音情感识别(SER)处理语音信号以检测和表征表达的感知情绪。许多SER应用系统经常获取和传输在客户端收集的语音数据,以远程云平台进行推理和决策。然而,语音数据不仅涉及在声乐表达中传达的情绪,而且还具有其他敏感的人口特征,例如性别,年龄和语言背景。因此,塞尔系统希望能够在防止敏感和人口统计信息的意外/不正当推论的同时对情感构建进行分类的能力。联合学习(FL)是一个分布式机器学习范例,其协调客户端,以便在不共享其本地数据的情况下协同培训模型。此培训方法似乎是安全的,可以提高SER的隐私。然而,最近的作品表明,流动方法仍然容易受到重建攻击和会员推论攻击等各种隐私攻击的影响。虽然这些大部分都集中在计算机视觉应用程序上,但是使用FL技术训练的SER系统中存在这种信息泄漏。为了评估使用FL培训的SER系统的信息泄漏,我们提出了一个属性推理攻击框架,其分别涉及来自共享梯度或模型参数的客户端的敏感属性信息,分别对应于FEDSGD和FADAVG训练算法。作为一种用例,我们使用三个SER基准数据集来统一地评估我们预测客户的性别信息的方法:IEMocap,Crema-D和MSP-EXPLA。我们表明,使用FL培训的SER系统可实现属性推理攻击。我们进一步确定大多数信息泄漏可能来自SER模型中的第一层。
translated by 谷歌翻译
由于联邦学习(FL)的分布性质,研究人员发现FL容易受到后门攻击的影响,该攻击旨在将子任务注入FL而不破坏主要任务的性能。当在FL模型收敛上注入时,单发后门攻击在主要任务和后门子任务上都可以达到高度精度。但是,早期注射的单发后门攻击是无效的,因为:(1)由于正常局部更新的稀释效果,在注射时未达到最大的后门效果; (2)后门效应迅速下降,因为后门将被新的普通本地更新所覆盖。在本文中,我们利用FL模型信息泄漏加强了早期注射的单发后门攻击。我们表明,如果客户在模拟整个人群的分布和梯度的数据集上进行训练,则可以加快FL收敛速度。基于这一观察结果,我们提出了两阶段的后门攻击,其中包括随后的后门攻击的初步阶段。在初步阶段,受攻击者控制的客户首先启动了整个人口分布推理攻击,然后在本地制作的数据集上进行训练,该数据集与梯度和推断分布保持一致。从初步阶段中受益,后来注射的后门实现了更好的有效性,因为后门效应不太可能被普通模型更新稀释。在各种数据异质性设置下,在MNIST数据集上进行了广泛的实验,以评估拟议的后门攻击的有效性。结果表明,即使有防御机制,该提议的后门以成功率和寿命都优于现有的后门攻击。
translated by 谷歌翻译
Federated Learning (FL) has been widely accepted as the solution for privacy-preserving machine learning without collecting raw data. While new technologies proposed in the past few years do evolve the FL area, unfortunately, the evaluation results presented in these works fall short in integrity and are hardly comparable because of the inconsistent evaluation metrics and experimental settings. In this paper, we propose a holistic evaluation framework for FL called FedEval, and present a benchmarking study on seven state-of-the-art FL algorithms. Specifically, we first introduce the core evaluation taxonomy model, called FedEval-Core, which covers four essential evaluation aspects for FL: Privacy, Robustness, Effectiveness, and Efficiency, with various well-defined metrics and experimental settings. Based on the FedEval-Core, we further develop an FL evaluation platform with standardized evaluation settings and easy-to-use interfaces. We then provide an in-depth benchmarking study between the seven well-known FL algorithms, including FedSGD, FedAvg, FedProx, FedOpt, FedSTC, SecAgg, and HEAgg. We comprehensively analyze the advantages and disadvantages of these algorithms and further identify the suitable practical scenarios for different algorithms, which is rarely done by prior work. Lastly, we excavate a set of take-away insights and future research directions, which are very helpful for researchers in the FL area.
translated by 谷歌翻译
联邦学习(FL)和分裂学习(SL)是两个流行的分布式机器学习方法。遵循模型到数据方案;客户培训和测试机器学习模型而不共享原始数据。由于客户端和服务器之间的机器学习模型架构,SL提供比FL更好的模型隐私。此外,分割模型使SL成为资源受限环境的更好选择。然而,由于基于中继的训练,SL表现在多个客户端的继电器训练引起的速度。在这方面,本文提出了一种名为Splitfed Learning(SFL)的新方法,该方法可分摊两种方法消除其固有缺点,以及包含差异隐私和PIXELD的精制架构配置,以增强数据隐私和模型鲁棒性。我们的分析和经验结果表明,(纯)SFL提供了类似的测试精度和通信效率,作为SL,同时每个全球时代显着降低其用于多个客户端的SL中的计算时间。此外,如SL在SL中,它的通信效率随着客户的数量而改善。此外,在扩展实验环境下进一步评估了具有隐私和鲁棒性度量的SFL的性能。
translated by 谷歌翻译