培训深度神经网络通常会迫使用户在分布式或外包环境中工作,并伴随着隐私问题。 Split学习旨在通过在客户端和服务器之间分配模型来解决这一问题。该方案据说提供了隐私,因为服务器无法看到客户端的模型和输入。我们表明,通过两次新颖的攻击,这是不正确的。 (1)我们表明,只有掌握客户端神经网络体系结构知识的诚实但充满感染的分裂学习服务器可以恢复输入样本并获得与客户端模型的功能相似的模型,而无需检测到。 (2)我们证明,如果客户端仅隐藏模型的输出层以“保护”专用标签,则诚实但有趣的服务器可以完全准确地推断出标签。我们使用各种基准数据集测试我们的攻击,并反对提议的隐私增强扩展以分裂学习。我们的结果表明,明文分裂学习可能会带来严重的风险,从数据(输入)隐私到知识产权(模型参数),并且不仅仅提供虚假的安全感。
translated by 谷歌翻译
分布式深度学习框架(例如分裂学习)在培训深神经网络的计算成本以及一组数据持有人的集体数据的隐私性利用方面为巨大的好处。特别是,通过将神经网络分配在客户端和服务器之间,以便客户端计算初始图层集,并且服务器计算其余的。但是,此方法引入了试图窃取客户端数据的恶意服务器的唯一攻击向量:该服务器可以将客户端模型引导到学习其选择的任何任务,例如倾向于输出易于可逆值。有了一个已经提出的具体示例(Pasquini等,CCS '21),这种训练式攻击攻击构成了分裂学习客户的数据隐私的重大风险。在本文中,我们提出了SplitGuard,该方法可以通过这种方法来检测该方法是否是通过训练式攻击攻击的目标。我们通过实验评估方法的有效性,将其与潜在的替代方案进行比较,并详细讨论与其使用相关的各个点。我们得出的结论是,Splitguard可以有效地检测训练式攻击,同时最大程度地减少对手回收的信息量。
translated by 谷歌翻译
我们调查分裂学习的安全 - 一种新颖的协作机器学习框架,通过需要最小的资源消耗来实现峰值性能。在本文中,我们通过介绍客户私人培训集重建的一般攻击策略来揭示议定书的脆弱性并展示其固有的不安全。更突出地,我们表明恶意服务器可以积极地劫持分布式模型的学习过程,并将其纳入不安全状态,从而为客户端提供推动攻击。我们实施不同的攻击调整,并在各种数据集中测试它们以及现实的威胁方案。我们证明我们的攻击能够克服最近提出的防御技术,旨在提高分裂学习议定书的安全性。最后,我们还通过扩展以前设计的联合学习的攻击来说明协议对恶意客户的不安全性。要使我们的结果可重复,我们会在https://github.com/pasquini-dario/splitn_fsha提供的代码。
translated by 谷歌翻译
Large training data and expensive model tweaking are standard features of deep learning for images. As a result, data owners often utilize cloud resources to develop large-scale complex models, which raises privacy concerns. Existing solutions are either too expensive to be practical or do not sufficiently protect the confidentiality of data and models. In this paper, we study and compare novel \emph{image disguising} mechanisms, DisguisedNets and InstaHide, aiming to achieve a better trade-off among the level of protection for outsourced DNN model training, the expenses, and the utility of data. DisguisedNets are novel combinations of image blocktization, block-level random permutation, and two block-level secure transformations: random multidimensional projection (RMT) and AES pixel-level encryption (AES). InstaHide is an image mixup and random pixel flipping technique \cite{huang20}. We have analyzed and evaluated them under a multi-level threat model. RMT provides a better security guarantee than InstaHide, under the Level-1 adversarial knowledge with well-preserved model quality. In contrast, AES provides a security guarantee under the Level-2 adversarial knowledge, but it may affect model quality more. The unique features of image disguising also help us to protect models from model-targeted attacks. We have done an extensive experimental evaluation to understand how these methods work in different settings for different datasets.
translated by 谷歌翻译
Split Learning (SL) and Federated Learning (FL) are two prominent distributed collaborative learning techniques that maintain data privacy by allowing clients to never share their private data with other clients and servers, and fined extensive IoT applications in smart healthcare, smart cities, and smart industry. Prior work has extensively explored the security vulnerabilities of FL in the form of poisoning attacks. To mitigate the effect of these attacks, several defenses have also been proposed. Recently, a hybrid of both learning techniques has emerged (commonly known as SplitFed) that capitalizes on their advantages (fast training) and eliminates their intrinsic disadvantages (centralized model updates). In this paper, we perform the first ever empirical analysis of SplitFed's robustness to strong model poisoning attacks. We observe that the model updates in SplitFed have significantly smaller dimensionality as compared to FL that is known to have the curse of dimensionality. We show that large models that have higher dimensionality are more susceptible to privacy and security attacks, whereas the clients in SplitFed do not have the complete model and have lower dimensionality, making them more robust to existing model poisoning attacks. Our results show that the accuracy reduction due to the model poisoning attack is 5x lower for SplitFed compared to FL.
translated by 谷歌翻译
如今,深度学习模型的所有者和开发人员必须考虑其培训数据的严格隐私保护规则,通常是人群来源且保留敏感信息。如今,深入学习模型执行隐私保证的最广泛采用的方法依赖于实施差异隐私的优化技术。根据文献,这种方法已被证明是针对多种模型的隐私攻击的成功防御,但其缺点是对模型的性能的实质性降级。在这项工作中,我们比较了差异私有的随机梯度下降(DP-SGD)算法与使用正则化技术的标准优化实践的有效性。我们分析了生成模型的实用程序,培训性能以及成员推理和模型反转攻击对学习模型的有效性。最后,我们讨论了差异隐私的缺陷和限制,并从经验上证明了辍学和L2型规范的卓越保护特性。
translated by 谷歌翻译
利用梯度泄漏以重建据称为私人培训数据,梯度反演攻击是神经网络协作学习的无处不在威胁。为了防止梯度泄漏而不会遭受模型绩效严重损失的情况,最近的工作提出了一个基于变化模型作为任意模型体系结构的扩展的隐私增强模块(预编码)。在这项工作中,我们研究了预言对梯度反转攻击的影响,以揭示其基本的工作原理。我们表明,各变化建模会引起预科及其随后的层梯度的随机性,从而阻止梯度攻击的收敛性。通过在攻击优化期间有目的地省略那些随机梯度,我们制定了一种可以禁用Precode隐私保护效果的攻击。为了确保对这种有针对性攻击的隐私保护,我们将部分扰动(PPP)提出,作为变异建模和部分梯度扰动的战略组合。我们对四个开创性模型架构和两个图像分类数据集进行了广泛的实证研究。我们发现所有架构都容易梯度泄漏,可以通过PPP预防。因此,我们表明我们的方法需要较小的梯度扰动才能有效地保留隐私而不会损害模型性能。
translated by 谷歌翻译
Deep Learning has recently become hugely popular in machine learning for its ability to solve end-to-end learning systems, in which the features and the classifiers are learned simultaneously, providing significant improvements in classification accuracy in the presence of highly-structured and large databases.Its success is due to a combination of recent algorithmic breakthroughs, increasingly powerful computers, and access to significant amounts of data.Researchers have also considered privacy implications of deep learning. Models are typically trained in a centralized manner with all the data being processed by the same training algorithm. If the data is a collection of users' private data, including habits, personal pictures, geographical positions, interests, and more, the centralized server will have access to sensitive information that could potentially be mishandled. To tackle this problem, collaborative deep learning models have recently been proposed where parties locally train their deep learning structures and only share a subset of the parameters in the attempt to keep their respective training sets private. Parameters can also be obfuscated via differential privacy (DP) to make information extraction even more challenging, as proposed by Shokri and Shmatikov at CCS'15.Unfortunately, we show that any privacy-preserving collaborative deep learning is susceptible to a powerful attack that we devise in this paper. In particular, we show that a distributed, federated, or decentralized deep learning approach is fundamentally broken and does not protect the training sets of honest participants. The attack we developed exploits the real-time nature of the learning process that allows the adversary to train a Generative Adversarial Network (GAN) that generates prototypical samples of the targeted training set that was meant to be private (the samples generated by the GAN are intended to come from the same distribution as the training data). Interestingly, we show that record-level differential privacy applied to the shared parameters of the model, as suggested in previous work, is ineffective (i.e., record-level DP is not designed to address our attack).
translated by 谷歌翻译
Federated learning is a collaborative method that aims to preserve data privacy while creating AI models. Current approaches to federated learning tend to rely heavily on secure aggregation protocols to preserve data privacy. However, to some degree, such protocols assume that the entity orchestrating the federated learning process (i.e., the server) is not fully malicious or dishonest. We investigate vulnerabilities to secure aggregation that could arise if the server is fully malicious and attempts to obtain access to private, potentially sensitive data. Furthermore, we provide a method to further defend against such a malicious server, and demonstrate effectiveness against known attacks that reconstruct data in a federated learning setting.
translated by 谷歌翻译
语音情感识别(SER)处理语音信号以检测和表征表达的感知情绪。许多SER应用系统经常获取和传输在客户端收集的语音数据,以远程云平台进行推理和决策。然而,语音数据不仅涉及在声乐表达中传达的情绪,而且还具有其他敏感的人口特征,例如性别,年龄和语言背景。因此,塞尔系统希望能够在防止敏感和人口统计信息的意外/不正当推论的同时对情感构建进行分类的能力。联合学习(FL)是一个分布式机器学习范例,其协调客户端,以便在不共享其本地数据的情况下协同培训模型。此培训方法似乎是安全的,可以提高SER的隐私。然而,最近的作品表明,流动方法仍然容易受到重建攻击和会员推论攻击等各种隐私攻击的影响。虽然这些大部分都集中在计算机视觉应用程序上,但是使用FL技术训练的SER系统中存在这种信息泄漏。为了评估使用FL培训的SER系统的信息泄漏,我们提出了一个属性推理攻击框架,其分别涉及来自共享梯度或模型参数的客户端的敏感属性信息,分别对应于FEDSGD和FADAVG训练算法。作为一种用例,我们使用三个SER基准数据集来统一地评估我们预测客户的性别信息的方法:IEMocap,Crema-D和MSP-EXPLA。我们表明,使用FL培训的SER系统可实现属性推理攻击。我们进一步确定大多数信息泄漏可能来自SER模型中的第一层。
translated by 谷歌翻译
近年来,分布式机器学习已被广​​泛用于解决大型且复杂的数据集问题。因此,分布式学习的安全也引起了学术界和行业的越来越多的注意。在这种情况下,联合学习(FL)是通过在本地维护私人培训数据来开发为“安全”分布式学习的,并且仅在之间进行公共模型梯度。但是,迄今为止,为此过程提出了各种梯度泄漏攻击,并证明它是不安全的。例如,共享这些攻击的常见缺点:它们需要过多的辅助信息,例如模型权重,优化者和某些超参数(例如,学习率),在实际情况下很难获得。此外,许多现有算法避免在FL中传输模型梯度,然后转向发送模型权重,例如FedAvg,但很少有人认为其安全性违反。在本文中,我们提出了两个新颖的框架,以证明传输模型权重还可能在FL方案下泄露客户端局部数据,即(DLM和DLM+)。此外,进行了许多实验,以说明我们的攻击框架的效果和普遍性。在本文的最后,我们还向拟议的攻击介绍了两个防御,并评估了它们的保护效果。全面地,只有一些适当的自定义,拟议的攻击和防御方案也可以应用于一般分布式学习方案。
translated by 谷歌翻译
最近的攻击表明,可以从FEDSGD更新中恢复用户数据,从而破坏隐私。但是,这些攻击具有有限的实际相关性,因为联邦学习通常使用FedAvg算法。与FEDSGD相比,从FedAvg更新中恢复数据要困难得多,因为:(i)更新是在未观察到的中间网络权重计算的,(ii)使用大量批次,并且(iii)标签和网络权重在客户端上同时不同脚步。在这项工作中,我们提出了一项新的基于优化的攻击,该攻击通过解决上述挑战来成功攻击FedAvg。首先,我们使用自动差异化解决了优化问题,该分化迫使客户端更新的仿真,该更新生成了恢复的标签和输入的未观察到的参数,以匹配接收到的客户端更新。其次,我们通过将来自不同时期的图像与置换不变的先验联系起来来解决大量批处理。第三,我们通过在每个FedAvg步骤中估算现有FEDSGD攻击的参数来恢复标签。在流行的女性数据集中,我们证明,平均而言,我们从现实的FedAvg更新中成功地恢复了> 45%的图像,该更新是在10个本地时期计算出的10批批次,每个批次,每个图像,每张5张图像,而使用基线仅<10%。我们的发现表明,基于FedAvg的许多现实世界联合学习实现非常脆弱。
translated by 谷歌翻译
联合学习允许一组用户在私人训练数据集中培训深度神经网络。在协议期间,数据集永远不会留下各个用户的设备。这是通过要求每个用户向中央服务器发送“仅”模型更新来实现,从而汇总它们以更新深神经网络的参数。然而,已经表明,每个模型更新都具有关于用户数据集的敏感信息(例如,梯度反转攻击)。联合学习的最先进的实现通过利用安全聚合来保护这些模型更新:安全监控协议,用于安全地计算用户的模型更新的聚合。安全聚合是关键,以保护用户的隐私,因为它会阻碍服务器学习用户提供的个人模型更新的源,防止推断和数据归因攻击。在这项工作中,我们表明恶意服务器可以轻松地阐明安全聚合,就像后者未到位一样。我们设计了两种不同的攻击,能够在参与安全聚合的用户数量上,独立于参与安全聚合的用户数。这使得它们在大规模现实世界联邦学习应用中的具体威胁。攻击是通用的,不瞄准任何特定的安全聚合协议。即使安全聚合协议被其理想功能替换为提供完美的安全性的理想功能,它们也同样有效。我们的工作表明,安全聚合与联合学习相结合,当前实施只提供了“虚假的安全感”。
translated by 谷歌翻译
梯度反转攻击(或从梯度的输入恢复)是对联合学习的安全和隐私保存的新出现威胁,由此,协议中的恶意窃听者或参与者可以恢复(部分)客户的私有数据。本文评估了现有的攻击和防御。我们发现一些攻击对设置产生了强烈的假设。放松这种假设可以大大削弱这些攻击。然后,我们评估三种拟议的防御机制对梯度反转攻击的好处。我们展示了这些防御方法的隐私泄漏和数据效用的权衡,并发现以适当的方式将它们与它们相结合使得攻击较低,即使在原始的强烈假设下。我们还估计每个评估的防御下单个图像的端到端恢复的计算成本。我们的研究结果表明,目前可以针对较小的数据公用事业损失来捍卫最先进的攻击,如潜在策略的列表中总结。我们的代码可用于:https://github.com/princeton-sysml/gradattack。
translated by 谷歌翻译
制药行业可以更好地利用其数据资产来通过协作机器学习平台虚拟化药物发现。另一方面,由于参与者的培训数据的意外泄漏,存在不可忽略的风险,因此,对于这样的平台,必须安全和隐私权。本文介绍了在药物发现的临床前阶段进行协作建模的隐私风险评估,以加快有前途的候选药物的选择。在最新推理攻击的简短分类法之后,我们采用并定制了几种基础情况。最后,我们用一些相关的隐私保护技术来描述和实验,以减轻此类攻击。
translated by 谷歌翻译
鉴于对机器学习模型的访问,可以进行对手重建模型的培训数据?这项工作从一个强大的知情对手的镜头研究了这个问题,他们知道除了一个之外的所有培训数据点。通过实例化混凝土攻击,我们表明重建此严格威胁模型中的剩余数据点是可行的。对于凸模型(例如Logistic回归),重建攻击很简单,可以以封闭形式导出。对于更常规的模型(例如神经网络),我们提出了一种基于训练的攻击策略,该攻击策略接收作为输入攻击的模型的权重,并产生目标数据点。我们展示了我们对MNIST和CIFAR-10训练的图像分类器的攻击的有效性,并系统地研究了标准机器学习管道的哪些因素影响重建成功。最后,我们从理论上调查了有多差异的隐私足以通过知情对手减轻重建攻击。我们的工作提供了有效的重建攻击,模型开发人员可以用于评估超出以前作品中考虑的一般设置中的个别点的记忆(例如,生成语言模型或访问培训梯度);它表明,标准模型具有存储足够信息的能力,以实现培训数据点的高保真重建;它表明,差异隐私可以成功减轻该参数制度中的攻击,其中公用事业劣化最小。
translated by 谷歌翻译
Deep neural networks are susceptible to various inference attacks as they remember information about their training data. We design white-box inference attacks to perform a comprehensive privacy analysis of deep learning models. We measure the privacy leakage through parameters of fully trained models as well as the parameter updates of models during training. We design inference algorithms for both centralized and federated learning, with respect to passive and active inference attackers, and assuming different adversary prior knowledge.We evaluate our novel white-box membership inference attacks against deep learning algorithms to trace their training data records. We show that a straightforward extension of the known black-box attacks to the white-box setting (through analyzing the outputs of activation functions) is ineffective. We therefore design new algorithms tailored to the white-box setting by exploiting the privacy vulnerabilities of the stochastic gradient descent algorithm, which is the algorithm used to train deep neural networks. We investigate the reasons why deep learning models may leak information about their training data. We then show that even well-generalized models are significantly susceptible to white-box membership inference attacks, by analyzing stateof-the-art pre-trained and publicly available models for the CIFAR dataset. We also show how adversarial participants, in the federated learning setting, can successfully run active membership inference attacks against other participants, even when the global model achieves high prediction accuracies.
translated by 谷歌翻译
联邦学习的出现在维持隐私的同时,促进了机器学习模型之间的大规模数据交换。尽管历史悠久,但联邦学习正在迅速发展,以使更广泛的使用更加实用。该领域中最重要的进步之一是将转移学习纳入联邦学习,这克服了主要联合学习的基本限制,尤其是在安全方面。本章从安全的角度进行了有关联合和转移学习的交集的全面调查。这项研究的主要目标是发现可能损害使用联合和转移学习的系统的隐私和性能的潜在脆弱性和防御机制。
translated by 谷歌翻译
Split学习(SL)通过允许客户在不共享原始数据的情况下协作培训深度学习模型来实现数据隐私保护。但是,SL仍然有限制,例如潜在的数据隐私泄漏和客户端的高计算。在这项研究中,我们建议将SL局部层进行二线以进行更快的计算(在移动设备上的培训和推理阶段的前进时间少17.5倍)和减少内存使用情况(最多减少32倍的内存和带宽要求) 。更重要的是,二进制的SL(B-SL)模型可以减少SL污染数据中的隐私泄漏,而模型精度的降解仅小。为了进一步增强隐私保护,我们还提出了两种新颖的方法:1)培训额外的局部泄漏损失,2)应用差异隐私,可以单独或同时集成到B-SL模型中。与多种基准模型相比,使用不同数据集的实验结果肯定了B-SL模型的优势。还说明了B-SL模型针对功能空间劫持攻击(FSHA)的有效性。我们的结果表明,B-SL模型对于具有高隐私保护要求(例如移动医疗保健应用程序)的轻巧的物联网/移动应用程序很有希望。
translated by 谷歌翻译
Federated Learning是一个私人设计的分布式学习范式,客户在中央服务器汇总本地更新以计算全局模型之前,客户在自己的数据上训练本地模型。根据所使用的聚合方法,本地更新是本地学习模型的梯度或权重。最近的重建攻击对单个MiniBatch的梯度更新应用了梯度反演优化,以重建客户在培训期间使用的私人数据。由于最新的重建攻击仅关注单个更新,因此忽略了现实的对抗场景,例如跨多个小型批次训练的多个更新和更新。一些研究考虑了一个更具挑战性的对抗场景,在该场景中,只能根据多个迷你批次进行模型更新,并且可以观察到计算昂贵的模拟,以解开每个本地步骤的基本样本。在本文中,我们提出了一种新型的近似梯度反转攻击,可有效,有效地重建来自模型或梯度更新的图像,以及跨多个时期。简而言之,agic(i)近似于模型更新中使用的训练样本的梯度更新,以避免昂贵的仿真程序,(ii)利用从多个时期收集的梯度/模型更新,(iii)将权重增加到相对于层的重量增加重建质量的神经网络结构。我们在三个数据集CIFAR-10,CIFAR-100和Imagenet上广泛评估AGIC。我们的结果表明,与两种代表性的最先进的梯度反演攻击相比,AGIC将峰值信噪比(PSNR)提高了50%。此外,AGIC的速度比基于最新的模拟攻击快,例如,在模型更新之间使用8个本地步骤攻击FedAvg时,它的速度快5倍。
translated by 谷歌翻译