Split Learning (SL) and Federated Learning (FL) are two prominent distributed collaborative learning techniques that maintain data privacy by allowing clients to never share their private data with other clients and servers, and fined extensive IoT applications in smart healthcare, smart cities, and smart industry. Prior work has extensively explored the security vulnerabilities of FL in the form of poisoning attacks. To mitigate the effect of these attacks, several defenses have also been proposed. Recently, a hybrid of both learning techniques has emerged (commonly known as SplitFed) that capitalizes on their advantages (fast training) and eliminates their intrinsic disadvantages (centralized model updates). In this paper, we perform the first ever empirical analysis of SplitFed's robustness to strong model poisoning attacks. We observe that the model updates in SplitFed have significantly smaller dimensionality as compared to FL that is known to have the curse of dimensionality. We show that large models that have higher dimensionality are more susceptible to privacy and security attacks, whereas the clients in SplitFed do not have the complete model and have lower dimensionality, making them more robust to existing model poisoning attacks. Our results show that the accuracy reduction due to the model poisoning attack is 5x lower for SplitFed compared to FL.
translated by 谷歌翻译
联合学习(FL)允许相互不信任的客户可以协作培训通用的机器学习模型,而无需共享其私人/专有培训数据。不幸的是,FL很容易受到恶意客户的中毒,他们旨在通过在FL培训过程中发送恶意模型更新来阻碍常见训练的模型的准确性。我们认为,对现有FL系统的中毒攻击成功的关键因素是客户可用的模型更新空间,使恶意客户可以通过解决优化问题来搜索最有毒的模型更新。为了解决这个问题,我们提出了联合排名学习(FRL)。 FRL将标准FL中的模型参数更新(浮点数连续空间)从模型参数更新(一个连续的空间)缩小到参数排名的空间(整数值的离散空间)。为了能够使用参数等级(而不是参数权重)训练全球模型,FRL利用了最近的SuperMasks培训机制的想法。具体而言,FRL客户端根据其本地培训数据对随机初始化的神经网络(由服务器提供)的参数进行排名。 FRL Server使用投票机制来汇总客户在每个培训时期提交的参数排名,以生成下一个培训时期的全球排名。从直觉上讲,我们基于投票的聚合机制阻止中毒客户对全球模型进行重大的对抗性修改,因为每个客户都会进行一次投票!我们通过分析证明和实验证明了FRL对中毒的鲁棒性。我们还显示了FRL的高沟通效率。我们的实验证明了FRL在现实世界中的优势。
translated by 谷歌翻译
虽然最近的作品表明,联邦学习(FL)可能易受受损客户的袭击攻击,但它们对生产流系统的实际影响尚未完全理解。在这项工作中,我们的目标是通过枚举所有可能的威胁模型,中毒变化和对手的能力来制定综合系统化。我们专注于我们对未明确的中毒攻击,正如我们认为它们与生产流动部署有关。我们通过仔细表征现实威胁模型和对抗性能力,对实际生产的流动环境下无明显中毒攻击的关键分析。我们的研究结果令人惊讶:与既定信念相反,我们表明,即使使用简单,低成本的防御,我们也会在实践中非常强大。我们进一步进一步提出了新颖的,最先进的数据和模型中毒攻击,并通过三个基准数据集进行了广泛的实验,如何(在)有效中毒攻击在存在简单的防御机制中。我们的目标是纠正以前的误解,并提供关于对本主题更准确的(更现实)的研究的具体指导。
translated by 谷歌翻译
联合学习(FL)是一项广泛采用的分布式学习范例,在实践中,打算在利用所有参与者的整个数据集进行培训的同时保护用户的数据隐私。在FL中,多种型号在用户身上独立培训,集中聚合以在迭代过程中更新全局模型。虽然这种方法在保护隐私方面是优异的,但FL仍然遭受攻击或拜占庭故障等质量问题。最近的一些尝试已经解决了对FL的强大聚集技术的这种质量挑战。然而,最先进的(SOTA)强大的技术的有效性尚不清楚并缺乏全面的研究。因此,为了更好地了解这些SOTA流域的当前质量状态和挑战在存在攻击和故障的情况下,我们进行了大规模的实证研究,以研究SOTA FL的质量,从多个攻击角度,模拟故障(通过突变运算符)和聚合(防御)方法。特别是,我们对两个通用图像数据集和一个现实世界联邦医学图像数据集进行了研究。我们还系统地调查了攻击用户和独立和相同分布的(IID)因子,每个数据集的攻击/故障的分布对鲁棒性结果的影响。经过496个配置进行大规模分析后,我们发现每个用户的大多数突变者对最终模型具有可忽略不计的影响。此外,选择最强大的FL聚合器取决于攻击和数据集。最后,我们说明了可以实现几乎在所有攻击和配置上的任何单个聚合器以及具有简单集合模型的所有攻击和配置的常用解决方案的通用解决方案。
translated by 谷歌翻译
Federated Learning has emerged to cope with raising concerns about privacy breaches in using Machine or Deep Learning models. This new paradigm allows the leverage of deep learning models in a distributed manner, enhancing privacy preservation. However, the server's blindness to local datasets introduces its vulnerability to model poisoning attacks and data heterogeneity, tampering with the global model performance. Numerous works have proposed robust aggregation algorithms and defensive mechanisms, but the approaches are orthogonal to individual attacks or issues. FedCC, the proposed method, provides robust aggregation by comparing the Centered Kernel Alignment of Penultimate Layers Representations. The experiment results on FedCC demonstrate that it mitigates untargeted and targeted model poisoning or backdoor attacks while also being effective in non-Independently and Identically Distributed data environments. By applying FedCC against untargeted attacks, global model accuracy is recovered the most. Against targeted backdoor attacks, FedCC nullified attack confidence while preserving the test accuracy. Most of the experiment results outstand the baseline methods.
translated by 谷歌翻译
联合学习(FL)容易受到模型中毒攻击的影响,在该攻击中,恶意客户通过将操纵模型更新发送到服务器来破坏全局模型。现有的防御措施主要依靠拜占庭式抗体方法,即使某些客户是恶意的,旨在学习准确的全球模型。但是,在实践中,他们只能抵抗少数恶意客户。如何与大量恶意客户抗衡模型中毒攻击仍然是一个公开挑战。我们的fldetector通过检测恶意客户来应对这一挑战。 FLDETECTOR旨在检测和删除大多数恶意客户,以便拜占庭式的fl方法可以使用其余客户学习准确的全球模型。我们的主要观察结果是,在模型中毒攻击中,在多次迭代中的客户更新的模型更新是不一致的。因此,FLDetector通过检查其模型更高的一致性来检测恶意客户端。大致来说,服务器根据其历史模型更新使用Cauchy Mean Valie Therorem和L-BFG预测客户端的模型更新在多个迭代中不一致。我们在三个基准数据集上进行的广泛实验表明,FLDETECTOR可以准确检测到多种最新模型中毒攻击中的恶意客户。在删除了被检测到的恶意客户端后,现有的拜占庭式FL方法可以学习准确的全球模型。
translated by 谷歌翻译
隐私权联合学习允许多个用户与中央服务器协调共同培训模型。服务器仅学习最终聚合结果,从而防止用户(私有)培训数据从单个模型更新中泄漏。但是,保持单个更新私有,使恶意用户可以执行拜占庭式攻击并降低模型准确性,而无需检测到。针对拜占庭工人的最佳防御能力依赖于基于排名的统计数据,例如中位数,以查找恶意更新。但是,在安全域中实施基于隐私的排名统计信息在安全域中是不平淡无奇的,因为它需要对所有单个更新进行排序。我们建立了第一个私人鲁棒性检查,该检查在汇总模型更新上使用基于高断点等级的统计信息。通过利用随机聚类,我们在不损害隐私的情况下显着提高了防御的可扩展性。我们利用零知识证明中的派生统计界限来检测和删除恶意更新,而无需透露私人用户更新。我们的新颖框架Zprobe可以使拜占庭式的弹性和安全的联合学习。经验评估表明,Zprobe提供了低架空解决方案,以防御最新的拜占庭袭击,同时保留隐私。
translated by 谷歌翻译
联合学习是用于培训分布式,敏感数据的培训模型的流行策略,同时保留了数据隐私。先前的工作确定了毒害数据或模型的联合学习方案的一系列安全威胁。但是,联合学习是一个网络系统,客户与服务器之间的通信对于学习任务绩效起着至关重要的作用。我们强调了沟通如何在联邦学习中引入另一个漏洞表面,并研究网络级对手对训练联合学习模型的影响。我们表明,从精心选择的客户中删除网络流量的攻击者可以大大降低目标人群的模型准确性。此外,我们表明,来自少数客户的协调中毒运动可以扩大降低攻击。最后,我们开发了服务器端防御,通过识别和上采样的客户可能对目标准确性做出积极贡献,从而减轻了攻击的影响。我们在三个数据集上全面评估了我们的攻击和防御,假设具有网络部分可见性的加密通信渠道和攻击者。
translated by 谷歌翻译
最近出现的联邦学习(FL)是一个有吸引力的分布式学习框架,其中许多无线最终用户设备可以训练全局模型,数据仍然自动加载。与传统的机器学习框架相比,收集集中存储的用户数据,这为数据隐私带来了巨大的沟通负担和担忧,这种方法不仅可以保存网络带宽,还可以保护数据隐私。尽管前景有前景,但拜占庭袭击,传统分布式网络中的棘手威胁,也被发现对FL相当有效。在本文中,我们对佛罗里达州的抗议袭击进行了全面调查了捍卫拜占庭袭击的最先进战略。我们首先根据他们使用的技术为现有的防御解决方案提供分类法,然后是在整个板上的比较和讨论。然后,我们提出了一种新的拜占庭攻击方法,称为重量攻击,以击败这些防御计划,并进行实验以证明其威胁。结果表明,现有的防御解决方案虽然丰富,但仍远未完全保护FL。最后,我们表明体重攻击可能的可能对策,并突出了一些挑战和未来的研究方向,以减轻百灵鱼袭击杂志。
translated by 谷歌翻译
图神经网络(GNN)是一类用于处理图形域信息的基于深度学习的方法。 GNN最近已成为一种广泛使用的图形分析方法,因为它们可以为复杂的图形数据学习表示形式。但是,由于隐私问题和法规限制,集中的GNN可能很难应用于数据敏感的情况。 Federated学习(FL)是一种新兴技术,为保护隐私设置而开发,当几个方需要协作培训共享的全球模型时。尽管几项研究工作已应用于培训GNN(联邦GNN),但对他们对后门攻击的稳健性没有研究。本文通过在联邦GNN中进行两种类型的后门攻击来弥合这一差距:集中式后门攻击(CBA)和分发后门攻击(DBA)。我们的实验表明,在几乎所有评估的情况下,DBA攻击成功率高于CBA。对于CBA,即使对抗方的训练集嵌入了全球触发因素,所有本地触发器的攻击成功率也类似于全球触发因素。为了进一步探索联邦GNN中两次后门攻击的属性,我们评估了不同数量的客户,触发尺寸,中毒强度和触发密度的攻击性能。此外,我们探讨了DBA和CBA对两个最先进的防御能力的鲁棒性。我们发现,两次攻击都对被调查的防御能力进行了强大的强大,因此需要考虑将联邦GNN中的后门攻击视为需要定制防御的新威胁。
translated by 谷歌翻译
联合学习(FL)是一种分布式机器学习方法,其中多个客户在不交换数据的情况下协作培训联合模型。尽管FL在数据隐私保护方面取得了前所未有的成功,但其对自由骑手攻击的脆弱性吸引了人们越来越多的关注。现有的防御能力可能对高度伪装或高百分比的自由骑手无效。为了应对这些挑战,我们从新颖的角度重新考虑防御,即模型重量不断发展的频率。从经验上讲,我们获得了一种新颖的见解,即在FL的训练中,模型权重的频率不断发展,自由骑机的频率和良性客户的频率显着不同的。受到这种见解的启发,我们提出了一种基于模型权重演化频率的新型防御方法,称为WEF-DEFENSE。特别是,我们在本地训练期间首先收集重量演变的频率(定义为WEF-MATRIX)。对于每个客户端,它将本地型号的WEF-Matrix与每个迭代的模型重量一起上传到服务器。然后,服务器根据WEF-Matrix的差异将自由骑士与良性客户端分开。最后,服务器使用个性化方法为相应的客户提供不同的全局模型。在五个数据集和五个模型上进行的全面实验表明,与最先进的基线相比,WEF防御能力更好。
translated by 谷歌翻译
联邦学习(FL)和分裂学习(SL)是两个流行的分布式机器学习方法。遵循模型到数据方案;客户培训和测试机器学习模型而不共享原始数据。由于客户端和服务器之间的机器学习模型架构,SL提供比FL更好的模型隐私。此外,分割模型使SL成为资源受限环境的更好选择。然而,由于基于中继的训练,SL表现在多个客户端的继电器训练引起的速度。在这方面,本文提出了一种名为Splitfed Learning(SFL)的新方法,该方法可分摊两种方法消除其固有缺点,以及包含差异隐私和PIXELD的精制架构配置,以增强数据隐私和模型鲁棒性。我们的分析和经验结果表明,(纯)SFL提供了类似的测试精度和通信效率,作为SL,同时每个全球时代显着降低其用于多个客户端的SL中的计算时间。此外,如SL在SL中,它的通信效率随着客户的数量而改善。此外,在扩展实验环境下进一步评估了具有隐私和鲁棒性度量的SFL的性能。
translated by 谷歌翻译
联邦学习本质上很容易模拟中毒攻击,因为其分散性质允许攻击者参与受损的设备。在模型中毒攻击中,攻击者通过上传“中毒”更新来降低目标子任务(例如,作为鸟类的分类平面)模型的性能。在本报告中,我们介绍\ algoname {},这是一种使用全局Top-K更新稀疏和设备级渐变剪辑来减轻模型中毒攻击的新型防御。我们提出了一个理论框架,用于分析防御抗毒攻击的稳健性,并提供我们算法的鲁棒性和收敛性分析。为了验证其经验效率,我们在跨多个基准数据集中进行开放源评估,用于计算机愿景和联合学习。
translated by 谷歌翻译
由于其在广泛的协作学习任务中的成功,联邦学习框架的普及程度越来越多,也引起了有关学习模型的某些安全问题,因为恶意客户可能参与学习过程。因此,目的是消除恶意参与者的影响,并确保最终模型是可信赖的。关于拜占庭攻击的一个常见观察结果是,客户的模型/更新之间的差异越高,隐藏攻击的空间就越多。为此,最近已经表明,通过利用动量,从而减少了方差,可以削弱已知的拜占庭攻击的强度。居中的剪裁框架(ICML 2021)进一步表明,除了降低差异外,从上一个迭代中的动量项可以用作中和拜占庭式攻击并显示出对知名攻击的令人印象深刻的表现。但是,在这项工作的范围内,我们表明居中的剪裁框架具有某些漏洞,并且可以根据这些漏洞来修订现有的攻击,以规避居中的剪裁防御。因此,我们介绍了一种设计攻击的策略,以规避居中的剪裁框架,并通过将测试准确性降低到最佳场景中的5-40,从而在数值上说明了其针对中心剪裁的有效性以及其他已知的防御策略。
translated by 谷歌翻译
Non-IID data distribution across clients and poisoning attacks are two main challenges in real-world federated learning systems. While both of them have attracted great research interest with specific strategies developed, no known solution manages to address them in a unified framework. To jointly overcome both challenges, we propose SmartFL, a generic approach that optimizes the server-side aggregation process with a small clean server-collected proxy dataset (e.g., around one hundred samples, 0.2% of the dataset) via a subspace training technique. Specifically, the aggregation weight of each participating client at each round is optimized using the server-collected proxy data, which is essentially the optimization of the global model in the convex hull spanned by client models. Since at each round, the number of tunable parameters optimized on the server side equals the number of participating clients (thus independent of the model size), we are able to train a global model with massive parameters using only a small amount of proxy data. We provide theoretical analyses of the convergence and generalization capacity for SmartFL. Empirically, SmartFL achieves state-of-the-art performance on both federated learning with non-IID data distribution and federated learning with malicious clients. The source code will be released.
translated by 谷歌翻译
联合学习使不同的各方能够在服务器的编排下协作建立全球模型,同时将培训数据保留在客户的设备上。但是,当客户具有异质数据时,性能会受到影响。为了解决这个问题,我们假设尽管数据异质性,但有些客户的数据分布可以集群。在以前的方法中,为了群集客户端,服务器要求客户端同时发送参数。但是,在有大量参与者可能有限的参与者的情况下,这可能是有问题的。为了防止这种瓶颈,我们提出了FLIC(使用增量聚类的联合学习),其中服务器利用客户在联合培训期间发送的客户发送的更新,而不是要求他们同时发送参数。因此,除了经典的联合学习所需的内容外,服务器与客户之间没有任何其他沟通。我们从经验上证明了各种非IID案例,我们的方法成功地按照相同的数据分布将客户分组分组。我们还通过研究其能力在联邦学习过程的早期阶段对客户进行分配的能力来确定FLIC的局限性。我们进一步将对模型的攻击作为数据异质性的一种形式,并从经验上表明,即使恶意客户的比例高于50 \%,FLIC也是针对中毒攻击的强大防御。
translated by 谷歌翻译
联合学习(FL)和分裂学习(SL)是两种新兴的协作学习方法,可能会极大地促进物联网(IoT)中无处不在的智能。联合学习使机器学习(ML)模型在本地培训的模型使用私人数据汇总为全球模型。分裂学习使ML模型的不同部分可以在学习框架中对不同工人进行协作培训。联合学习和分裂学习,每个学习都有独特的优势和各自的局限性,可能会相互补充,在物联网中无处不在的智能。因此,联合学习和分裂学习的结合最近成为一个活跃的研究领域,引起了广泛的兴趣。在本文中,我们回顾了联合学习和拆分学习方面的最新发展,并介绍了有关最先进技术的调查,该技术用于将这两种学习方法组合在基于边缘计算的物联网环境中。我们还确定了一些开放问题,并讨论了该领域未来研究的可能方向,希望进一步引起研究界对这个新兴领域的兴趣。
translated by 谷歌翻译
我们调查分裂学习的安全 - 一种新颖的协作机器学习框架,通过需要最小的资源消耗来实现峰值性能。在本文中,我们通过介绍客户私人培训集重建的一般攻击策略来揭示议定书的脆弱性并展示其固有的不安全。更突出地,我们表明恶意服务器可以积极地劫持分布式模型的学习过程,并将其纳入不安全状态,从而为客户端提供推动攻击。我们实施不同的攻击调整,并在各种数据集中测试它们以及现实的威胁方案。我们证明我们的攻击能够克服最近提出的防御技术,旨在提高分裂学习议定书的安全性。最后,我们还通过扩展以前设计的联合学习的攻击来说明协议对恶意客户的不安全性。要使我们的结果可重复,我们会在https://github.com/pasquini-dario/splitn_fsha提供的代码。
translated by 谷歌翻译
由于对个人数据隐私的不断增长和当地客户的迅速增长的数据量,Federated Learnated(FL)的动机已成为新的机器学习设置。 FL系统由中央参数服务器和多个本地客户端组成。它将数据保留在本地客户端,并通过共享本地学到的模型参数来学习集中式模型。不需要共享本地数据,并且可以很好地保护隐私。然而,由于它是模型而不是共享的原始数据,因此系统可以暴露于恶意客户端发起的中毒模型攻击。此外,由于服务器上没有本地客户端数据,因此确定恶意客户端是一项挑战。此外,仍然可以使用上载模型估算客户本地数据,从而导致隐私披露。在这项工作中,我们首先提出了一个基于模型更新的联合平均算法,以防御拜占庭式攻击,例如加性噪声攻击和弹药攻击。提出了单个客户模型初始化方法,以通过隐藏各个本地机器学习模型来提供进一步的隐私保护。在结合这两个方案时,隐私和安全性都可以有效地增强。当没有攻击时,提出的方案被证明在非IID数据分布下实验会收敛。在拜占庭式攻击下,提议的方案的表现要比基于经典模型的FedAvg算法要好得多。
translated by 谷歌翻译
这项工作调查了联合学习的可能性,了解IOT恶意软件检测,并研究该新学习范式固有的安全问题。在此上下文中,呈现了一种使用联合学习来检测影响物联网设备的恶意软件的框架。 n-baiot,一个数据集在由恶意软件影响的几个实际物联网设备的网络流量,已被用于评估所提出的框架。经过培训和评估监督和无监督和无监督的联邦模型(多层Perceptron和AutoEncoder)能够检测到MATEN和UNEEN的IOT设备的恶意软件,并进行了培训和评估。此外,它们的性能与两种传统方法进行了比较。第一个允许每个参与者在本地使用自己的数据局面训练模型,而第二个包括使参与者与负责培训全局模型的中央实体共享他们的数据。这种比较表明,在联合和集中方法中完成的使用更多样化和大数据,对模型性能具有相当大的积极影响。此外,联邦模型,同时保留了参与者的隐私,将类似的结果与集中式相似。作为额外的贡献,并衡量联邦方法的稳健性,已经考虑了具有若干恶意参与者中毒联邦模型的对抗性设置。即使使用单个对手,大多数联邦学习算法中使用的基线模型聚合平均步骤也很容易受到不同攻击的影响。因此,在相同的攻击方案下评估了作为对策的其他模型聚合函数的性能。这些职能对恶意参与者提供了重大改善,但仍然需要更多的努力来使联邦方法强劲。
translated by 谷歌翻译