隐私权联合学习允许多个用户与中央服务器协调共同培训模型。服务器仅学习最终聚合结果,从而防止用户(私有)培训数据从单个模型更新中泄漏。但是,保持单个更新私有,使恶意用户可以执行拜占庭式攻击并降低模型准确性,而无需检测到。针对拜占庭工人的最佳防御能力依赖于基于排名的统计数据,例如中位数,以查找恶意更新。但是,在安全域中实施基于隐私的排名统计信息在安全域中是不平淡无奇的,因为它需要对所有单个更新进行排序。我们建立了第一个私人鲁棒性检查,该检查在汇总模型更新上使用基于高断点等级的统计信息。通过利用随机聚类,我们在不损害隐私的情况下显着提高了防御的可扩展性。我们利用零知识证明中的派生统计界限来检测和删除恶意更新,而无需透露私人用户更新。我们的新颖框架Zprobe可以使拜占庭式的弹性和安全的联合学习。经验评估表明,Zprobe提供了低架空解决方案,以防御最新的拜占庭袭击,同时保留隐私。
translated by 谷歌翻译
拜占庭式联合学习(FL)旨在对抗恶意客户并培训准确的全球模型,同时保持极低的攻击成功率。然而,大多数现有系统仅在诚实/半hon最达克的多数设置中都具有强大的功能。 FLTRUST(NDSS '21)将上下文扩展到对客户的恶意多数,但在训练之前,应在训练之前为服务器提供辅助数据集,以便过滤恶意输入。私人火焰/flguard(Usenix '22)提供了一种解决方案,以确保在半多数上下文中既有稳健性和更新机密性。到目前为止,不可能平衡恶意背景,鲁棒性和更新机密性之间的权衡。为了解决这个问题,我们提出了一种新颖的拜占庭式bybust和隐私的FL系统,称为简介,以捕获恶意的少数群体和多数服务器和客户端。具体而言,基于DBSCAN算法,我们设计了一种通过成对调整的余弦相似性聚类的新方法,以提高聚类结果的准确性。为了阻止多数攻击恶意的攻击,我们开发了一种称为模型分割的算法,在该算法中,同一集群中的本地更新聚集在一起,并且将聚合正确地发送回相应的客户端。我们还利用多种密码工具来执行聚类任务,而无需牺牲培训正确性并更新机密性。我们介绍了详细的安全证明和经验评估以及简要的收敛分析。实验结果表明,简介的测试精度实际上接近FL基线(平均为0.8%的差距)。同时,攻击成功率约为0%-5%。我们进一步优化了设计,以便可以分别降低{67%-89.17%和66.05%-68.75%}的通信开销和运行时。
translated by 谷歌翻译
Federated Learning (FL) is a scheme for collaboratively training Deep Neural Networks (DNNs) with multiple data sources from different clients. Instead of sharing the data, each client trains the model locally, resulting in improved privacy. However, recently so-called targeted poisoning attacks have been proposed that allow individual clients to inject a backdoor into the trained model. Existing defenses against these backdoor attacks either rely on techniques like Differential Privacy to mitigate the backdoor, or analyze the weights of the individual models and apply outlier detection methods that restricts these defenses to certain data distributions. However, adding noise to the models' parameters or excluding benign outliers might also reduce the accuracy of the collaboratively trained model. Additionally, allowing the server to inspect the clients' models creates a privacy risk due to existing knowledge extraction methods. We propose CrowdGuard, a model filtering defense, that mitigates backdoor attacks by leveraging the clients' data to analyze the individual models before the aggregation. To prevent data leaks, the server sends the individual models to secure enclaves, running in client-located Trusted Execution Environments. To effectively distinguish benign and poisoned models, even if the data of different clients are not independently and identically distributed (non-IID), we introduce a novel metric called HLBIM to analyze the outputs of the DNN's hidden layers. We show that the applied significance-based detection algorithm combined can effectively detect poisoned models, even in non-IID scenarios. We show in our extensive evaluation that CrowdGuard can effectively mitigate targeted poisoning attacks and achieve in various scenarios a True-Positive-Rate of 100% and a True-Negative-Rate of 100%.
translated by 谷歌翻译
Federated learning is a collaborative method that aims to preserve data privacy while creating AI models. Current approaches to federated learning tend to rely heavily on secure aggregation protocols to preserve data privacy. However, to some degree, such protocols assume that the entity orchestrating the federated learning process (i.e., the server) is not fully malicious or dishonest. We investigate vulnerabilities to secure aggregation that could arise if the server is fully malicious and attempts to obtain access to private, potentially sensitive data. Furthermore, we provide a method to further defend against such a malicious server, and demonstrate effectiveness against known attacks that reconstruct data in a federated learning setting.
translated by 谷歌翻译
最近出现的联邦学习(FL)是一个有吸引力的分布式学习框架,其中许多无线最终用户设备可以训练全局模型,数据仍然自动加载。与传统的机器学习框架相比,收集集中存储的用户数据,这为数据隐私带来了巨大的沟通负担和担忧,这种方法不仅可以保存网络带宽,还可以保护数据隐私。尽管前景有前景,但拜占庭袭击,传统分布式网络中的棘手威胁,也被发现对FL相当有效。在本文中,我们对佛罗里达州的抗议袭击进行了全面调查了捍卫拜占庭袭击的最先进战略。我们首先根据他们使用的技术为现有的防御解决方案提供分类法,然后是在整个板上的比较和讨论。然后,我们提出了一种新的拜占庭攻击方法,称为重量攻击,以击败这些防御计划,并进行实验以证明其威胁。结果表明,现有的防御解决方案虽然丰富,但仍远未完全保护FL。最后,我们表明体重攻击可能的可能对策,并突出了一些挑战和未来的研究方向,以减轻百灵鱼袭击杂志。
translated by 谷歌翻译
联邦机器学习利用边缘计算来开发网络用户数据的模型,但联合学习的隐私仍然是一个重大挑战。已经提出了使用差异隐私的技术来解决这一点,但是带来了自己的挑战 - 许多人需要一个值得信赖的第三方,或者增加了太多的噪音来生产有用的模型。使用多方计算的\ EMPH {SERVE聚合}的最新进步消除了对第三方的需求,但是在计算上尤其在规模上昂贵。我们提出了一种新的联合学习协议,利用了一种基于与错误学习的技术的新颖差异私有的恶意安全聚合协议。我们的协议优于当前最先进的技术,并且经验结果表明它缩放到大量方面,具有任何差别私有联合学习方案的最佳精度。
translated by 谷歌翻译
联邦学习本质上很容易模拟中毒攻击,因为其分散性质允许攻击者参与受损的设备。在模型中毒攻击中,攻击者通过上传“中毒”更新来降低目标子任务(例如,作为鸟类的分类平面)模型的性能。在本报告中,我们介绍\ algoname {},这是一种使用全局Top-K更新稀疏和设备级渐变剪辑来减轻模型中毒攻击的新型防御。我们提出了一个理论框架,用于分析防御抗毒攻击的稳健性,并提供我们算法的鲁棒性和收敛性分析。为了验证其经验效率,我们在跨多个基准数据集中进行开放源评估,用于计算机愿景和联合学习。
translated by 谷歌翻译
由于其在广泛的协作学习任务中的成功,联邦学习框架的普及程度越来越多,也引起了有关学习模型的某些安全问题,因为恶意客户可能参与学习过程。因此,目的是消除恶意参与者的影响,并确保最终模型是可信赖的。关于拜占庭攻击的一个常见观察结果是,客户的模型/更新之间的差异越高,隐藏攻击的空间就越多。为此,最近已经表明,通过利用动量,从而减少了方差,可以削弱已知的拜占庭攻击的强度。居中的剪裁框架(ICML 2021)进一步表明,除了降低差异外,从上一个迭代中的动量项可以用作中和拜占庭式攻击并显示出对知名攻击的令人印象深刻的表现。但是,在这项工作的范围内,我们表明居中的剪裁框架具有某些漏洞,并且可以根据这些漏洞来修订现有的攻击,以规避居中的剪裁防御。因此,我们介绍了一种设计攻击的策略,以规避居中的剪裁框架,并通过将测试准确性降低到最佳场景中的5-40,从而在数值上说明了其针对中心剪裁的有效性以及其他已知的防御策略。
translated by 谷歌翻译
安全聚合是一个流行的保留联合学习中的流行协议,它允许模型聚合,而不会在清除中显示各个模型。另一方面,传统的安全聚合协议产生了显着的通信开销,这可能成为现实世界带宽限制应用中的主要瓶颈。在解决这一挑战方面,在这项工作中,我们提出了一种用于安全聚合的轻量级渐变稀疏框架,其中服务器从大量用户学习Sparsified本地模型更新的聚合,但不学习各个参数。我们的理论分析表明,所提出的框架可以显着降低安全聚合的通信开销,同时确保可比计算复杂性。我们进一步确定了由于稀疏因疏脂而在隐私和沟通效率之间的权衡。我们的实验表明,我们的框架在与传统安全聚合基准相比时,我们的框架将延长到7.8倍降低了高达7.8倍,同时加速了墙上时钟训练时间1.13x。
translated by 谷歌翻译
Split Learning (SL) and Federated Learning (FL) are two prominent distributed collaborative learning techniques that maintain data privacy by allowing clients to never share their private data with other clients and servers, and fined extensive IoT applications in smart healthcare, smart cities, and smart industry. Prior work has extensively explored the security vulnerabilities of FL in the form of poisoning attacks. To mitigate the effect of these attacks, several defenses have also been proposed. Recently, a hybrid of both learning techniques has emerged (commonly known as SplitFed) that capitalizes on their advantages (fast training) and eliminates their intrinsic disadvantages (centralized model updates). In this paper, we perform the first ever empirical analysis of SplitFed's robustness to strong model poisoning attacks. We observe that the model updates in SplitFed have significantly smaller dimensionality as compared to FL that is known to have the curse of dimensionality. We show that large models that have higher dimensionality are more susceptible to privacy and security attacks, whereas the clients in SplitFed do not have the complete model and have lower dimensionality, making them more robust to existing model poisoning attacks. Our results show that the accuracy reduction due to the model poisoning attack is 5x lower for SplitFed compared to FL.
translated by 谷歌翻译
在联合学习(FL)中,一组参与者共享与将更新结合到全局模型中的聚合服务器在本地数据上计算的更新。但是,将准确性与隐私和安全性进行调和是FL的挑战。一方面,诚实参与者发送的良好更新可能会揭示其私人本地信息,而恶意参与者发送的中毒更新可能会损害模型的可用性和/或完整性。另一方面,通过更新失真赔偿准确性增强隐私,而通过更新聚合损坏安全性,因为它不允许服务器过滤掉单个中毒更新。为了解决准确性私人关系冲突,我们提出{\ em碎片的联合学习}(FFL),其中参与者在将其发送到服务器之前,随机交换并混合其更新的片段。为了获得隐私,我们设计了一个轻巧的协议,该协议允许参与者私下交换和混合其更新的加密片段,以便服务器既不能获得单个更新,也不能将其链接到其发起人。为了实现安全性,我们设计了针对FFL量身定制的基于声誉的防御,该防御根据他们交换的片段质量以及他们发送的混合更新来建立对参与者及其混合更新的信任。由于交换的片段的参数可以保持其原始坐标和攻击者可以中和,因此服务器可以从接收到的混合更新中正确重建全局模型而不会准确损失。四个真实数据集的实验表明,FFL可以防止半冬季服务器安装隐私攻击,可以有效地抵抗中毒攻击,并可以保持全局模型的准确性。
translated by 谷歌翻译
联合学习(FL)允许相互不信任的客户可以协作培训通用的机器学习模型,而无需共享其私人/专有培训数据。不幸的是,FL很容易受到恶意客户的中毒,他们旨在通过在FL培训过程中发送恶意模型更新来阻碍常见训练的模型的准确性。我们认为,对现有FL系统的中毒攻击成功的关键因素是客户可用的模型更新空间,使恶意客户可以通过解决优化问题来搜索最有毒的模型更新。为了解决这个问题,我们提出了联合排名学习(FRL)。 FRL将标准FL中的模型参数更新(浮点数连续空间)从模型参数更新(一个连续的空间)缩小到参数排名的空间(整数值的离散空间)。为了能够使用参数等级(而不是参数权重)训练全球模型,FRL利用了最近的SuperMasks培训机制的想法。具体而言,FRL客户端根据其本地培训数据对随机初始化的神经网络(由服务器提供)的参数进行排名。 FRL Server使用投票机制来汇总客户在每个培训时期提交的参数排名,以生成下一个培训时期的全球排名。从直觉上讲,我们基于投票的聚合机制阻止中毒客户对全球模型进行重大的对抗性修改,因为每个客户都会进行一次投票!我们通过分析证明和实验证明了FRL对中毒的鲁棒性。我们还显示了FRL的高沟通效率。我们的实验证明了FRL在现实世界中的优势。
translated by 谷歌翻译
联合学习(FL)允许多个客户端在私人数据上协作训练神经网络(NN)模型,而不会显示数据。最近,已经介绍了针对FL的几种针对性的中毒攻击。这些攻击将后门注入到所产生的模型中,允许对抗控制的输入被错误分类。抵抗后门攻击的现有对策效率低,并且通常仅旨在排除偏离聚合的偏离模型。然而,这种方法还删除了具有偏离数据分布的客户端的良性模型,导致聚合模型对这些客户端执行不佳。为了解决这个问题,我们提出了一种深入的模型过滤方法,用于减轻后门攻击。它基于三种新颖的技术,允许表征用于培训模型更新的数据的分布,并寻求测量NNS内部结构和输出中的细粒度差异。使用这些技术,DeepSight可以识别可疑的模型更新。我们还开发了一种可以准确集群模型更新的方案。结合两个组件的结果,DeepSight能够识别和消除含有高攻击模型的模型集群,具有高攻击影响。我们还表明,可以通过现有的基于重量剪切的防御能力减轻可能未被发现的中毒模型的后门贡献。我们评估了深度的性能和有效性,并表明它可以减轻最先进的后门攻击,对模型对良性数据的性能的影响忽略不计。
translated by 谷歌翻译
联合学习(FL)是一个分布式学习范式,使相互不信任的客户能够协作培训通用的机器学习模型。客户数据隐私在FL中至关重要。同时,必须保护模型免受对抗客户的中毒攻击。现有解决方案孤立地解决了这两个问题。我们提出了FedPerm,这是一种新的FL算法,它通过结合一种新型的内部模型参数改组技术来解决这两个问题,该技术可以放大数据隐私,并基于私人信息检索(PIR)技术,该技术允许允许对客户模型更新的加密聚合。这些技术的组合进一步有助于联邦服务器约束从客户端的参数更新,从而减少对抗性客户的模型中毒攻击的影响。我们进一步介绍了Fedperm独特的超参数,可以有效地使用Model Utilities进行计算开销。我们对MNIST数据集的经验评估表明,FEDPERM对FL中现有差异隐私(DP)执法解决方案的有效性。
translated by 谷歌翻译
联合学习(FL),数据保留在联合客户端,并且仅与中央聚合器共享梯度更新是私人的。最近的工作表明,具有梯度级别访问权限的对手可以成功进行推理和重建攻击。在这种情况下,众所周知,差异化(DP)学习可以提供弹性。但是,现状中使用的方法(\ ie中央和本地DP)引入了不同的公用事业与隐私权衡权衡。在这项工作中,我们迈出了通过{\ em层次fl(HFL)}来缓解此类权衡的第一步。我们证明,通过引入一个新的中介层,可以添加校准的DP噪声,可以获得更好的隐私与公用事业权衡;我们称此{\ em层次结构DP(HDP)}。我们使用3个不同数据集的实验(通常用作FL的基准)表明HDP产生的模型与使用中央DP获得的模型一样准确,在中央聚集器处添加了噪声。这种方法还为推理对手提供了可比的好处,例如在本地DP案例中,在联合客户端添加了噪音。
translated by 谷歌翻译
联合学习(FL)容易受到模型中毒攻击的影响,在该攻击中,恶意客户通过将操纵模型更新发送到服务器来破坏全局模型。现有的防御措施主要依靠拜占庭式抗体方法,即使某些客户是恶意的,旨在学习准确的全球模型。但是,在实践中,他们只能抵抗少数恶意客户。如何与大量恶意客户抗衡模型中毒攻击仍然是一个公开挑战。我们的fldetector通过检测恶意客户来应对这一挑战。 FLDETECTOR旨在检测和删除大多数恶意客户,以便拜占庭式的fl方法可以使用其余客户学习准确的全球模型。我们的主要观察结果是,在模型中毒攻击中,在多次迭代中的客户更新的模型更新是不一致的。因此,FLDetector通过检查其模型更高的一致性来检测恶意客户端。大致来说,服务器根据其历史模型更新使用Cauchy Mean Valie Therorem和L-BFG预测客户端的模型更新在多个迭代中不一致。我们在三个基准数据集上进行的广泛实验表明,FLDETECTOR可以准确检测到多种最新模型中毒攻击中的恶意客户。在删除了被检测到的恶意客户端后,现有的拜占庭式FL方法可以学习准确的全球模型。
translated by 谷歌翻译
Differentially private federated learning (DP-FL) has received increasing attention to mitigate the privacy risk in federated learning. Although different schemes for DP-FL have been proposed, there is still a utility gap. Employing central Differential Privacy in FL (CDP-FL) can provide a good balance between the privacy and model utility, but requires a trusted server. Using Local Differential Privacy for FL (LDP-FL) does not require a trusted server, but suffers from lousy privacy-utility trade-off. Recently proposed shuffle DP based FL has the potential to bridge the gap between CDP-FL and LDP-FL without a trusted server; however, there is still a utility gap when the number of model parameters is large. In this work, we propose OLIVE, a system that combines the merits from CDP-FL and LDP-FL by leveraging Trusted Execution Environment (TEE). Our main technical contributions are the analysis and countermeasures against the vulnerability of TEE in OLIVE. Firstly, we theoretically analyze the memory access pattern leakage of OLIVE and find that there is a risk for sparsified gradients, which is common in FL. Secondly, we design an inference attack to understand how the memory access pattern could be linked to the training data. Thirdly, we propose oblivious yet efficient algorithms to prevent the memory access pattern leakage in OLIVE. Our experiments on real-world data demonstrate that OLIVE is efficient even when training a model with hundreds of thousands of parameters and effective against side-channel attacks on TEE.
translated by 谷歌翻译
联合学习(FL)是一种分布式机器学习方法,其中多个客户在不交换数据的情况下协作培训联合模型。尽管FL在数据隐私保护方面取得了前所未有的成功,但其对自由骑手攻击的脆弱性吸引了人们越来越多的关注。现有的防御能力可能对高度伪装或高百分比的自由骑手无效。为了应对这些挑战,我们从新颖的角度重新考虑防御,即模型重量不断发展的频率。从经验上讲,我们获得了一种新颖的见解,即在FL的训练中,模型权重的频率不断发展,自由骑机的频率和良性客户的频率显着不同的。受到这种见解的启发,我们提出了一种基于模型权重演化频率的新型防御方法,称为WEF-DEFENSE。特别是,我们在本地训练期间首先收集重量演变的频率(定义为WEF-MATRIX)。对于每个客户端,它将本地型号的WEF-Matrix与每个迭代的模型重量一起上传到服务器。然后,服务器根据WEF-Matrix的差异将自由骑士与良性客户端分开。最后,服务器使用个性化方法为相应的客户提供不同的全局模型。在五个数据集和五个模型上进行的全面实验表明,与最先进的基线相比,WEF防御能力更好。
translated by 谷歌翻译
联合学习(FL)是一项广泛采用的分布式学习范例,在实践中,打算在利用所有参与者的整个数据集进行培训的同时保护用户的数据隐私。在FL中,多种型号在用户身上独立培训,集中聚合以在迭代过程中更新全局模型。虽然这种方法在保护隐私方面是优异的,但FL仍然遭受攻击或拜占庭故障等质量问题。最近的一些尝试已经解决了对FL的强大聚集技术的这种质量挑战。然而,最先进的(SOTA)强大的技术的有效性尚不清楚并缺乏全面的研究。因此,为了更好地了解这些SOTA流域的当前质量状态和挑战在存在攻击和故障的情况下,我们进行了大规模的实证研究,以研究SOTA FL的质量,从多个攻击角度,模拟故障(通过突变运算符)和聚合(防御)方法。特别是,我们对两个通用图像数据集和一个现实世界联邦医学图像数据集进行了研究。我们还系统地调查了攻击用户和独立和相同分布的(IID)因子,每个数据集的攻击/故障的分布对鲁棒性结果的影响。经过496个配置进行大规模分析后,我们发现每个用户的大多数突变者对最终模型具有可忽略不计的影响。此外,选择最强大的FL聚合器取决于攻击和数据集。最后,我们说明了可以实现几乎在所有攻击和配置上的任何单个聚合器以及具有简单集合模型的所有攻击和配置的常用解决方案的通用解决方案。
translated by 谷歌翻译
虽然最近的作品表明,联邦学习(FL)可能易受受损客户的袭击攻击,但它们对生产流系统的实际影响尚未完全理解。在这项工作中,我们的目标是通过枚举所有可能的威胁模型,中毒变化和对手的能力来制定综合系统化。我们专注于我们对未明确的中毒攻击,正如我们认为它们与生产流动部署有关。我们通过仔细表征现实威胁模型和对抗性能力,对实际生产的流动环境下无明显中毒攻击的关键分析。我们的研究结果令人惊讶:与既定信念相反,我们表明,即使使用简单,低成本的防御,我们也会在实践中非常强大。我们进一步进一步提出了新颖的,最先进的数据和模型中毒攻击,并通过三个基准数据集进行了广泛的实验,如何(在)有效中毒攻击在存在简单的防御机制中。我们的目标是纠正以前的误解,并提供关于对本主题更准确的(更现实)的研究的具体指导。
translated by 谷歌翻译