联合学习(FL),数据保留在联合客户端,并且仅与中央聚合器共享梯度更新是私人的。最近的工作表明,具有梯度级别访问权限的对手可以成功进行推理和重建攻击。在这种情况下,众所周知,差异化(DP)学习可以提供弹性。但是,现状中使用的方法(\ ie中央和本地DP)引入了不同的公用事业与隐私权衡权衡。在这项工作中,我们迈出了通过{\ em层次fl(HFL)}来缓解此类权衡的第一步。我们证明,通过引入一个新的中介层,可以添加校准的DP噪声,可以获得更好的隐私与公用事业权衡;我们称此{\ em层次结构DP(HDP)}。我们使用3个不同数据集的实验(通常用作FL的基准)表明HDP产生的模型与使用中央DP获得的模型一样准确,在中央聚集器处添加了噪声。这种方法还为推理对手提供了可比的好处,例如在本地DP案例中,在联合客户端添加了噪音。
translated by 谷歌翻译
联邦机器学习利用边缘计算来开发网络用户数据的模型,但联合学习的隐私仍然是一个重大挑战。已经提出了使用差异隐私的技术来解决这一点,但是带来了自己的挑战 - 许多人需要一个值得信赖的第三方,或者增加了太多的噪音来生产有用的模型。使用多方计算的\ EMPH {SERVE聚合}的最新进步消除了对第三方的需求,但是在计算上尤其在规模上昂贵。我们提出了一种新的联合学习协议,利用了一种基于与错误学习的技术的新颖差异私有的恶意安全聚合协议。我们的协议优于当前最先进的技术,并且经验结果表明它缩放到大量方面,具有任何差别私有联合学习方案的最佳精度。
translated by 谷歌翻译
Federated learning is a collaborative method that aims to preserve data privacy while creating AI models. Current approaches to federated learning tend to rely heavily on secure aggregation protocols to preserve data privacy. However, to some degree, such protocols assume that the entity orchestrating the federated learning process (i.e., the server) is not fully malicious or dishonest. We investigate vulnerabilities to secure aggregation that could arise if the server is fully malicious and attempts to obtain access to private, potentially sensitive data. Furthermore, we provide a method to further defend against such a malicious server, and demonstrate effectiveness against known attacks that reconstruct data in a federated learning setting.
translated by 谷歌翻译
Distributing machine learning predictors enables the collection of large-scale datasets while leaving sensitive raw data at trustworthy sites. We show that locally training support vector machines (SVMs) and computing their averages leads to a learning technique that is scalable to a large number of users, satisfies differential privacy, and is applicable to non-trivial tasks, such as CIFAR-10. For a large number of participants, communication cost is one of the main challenges. We achieve a low communication cost by requiring only a single invocation of an efficient secure multiparty summation protocol. By relying on state-of-the-art feature extractors (SimCLR), we are able to utilize differentially private convex learners for non-trivial tasks such as CIFAR-10. Our experimental results illustrate that for $1{,}000$ users with $50$ data points each, our scheme outperforms state-of-the-art scalable distributed learning methods (differentially private federated learning, short DP-FL) while requiring around $500$ times fewer communication costs: For CIFAR-10, we achieve a classification accuracy of $79.7\,\%$ for an $\varepsilon = 0.59$ while DP-FL achieves $57.6\,\%$. More generally, we prove learnability properties for the average of such locally trained models: convergence and uniform stability. By only requiring strongly convex, smooth, and Lipschitz-continuous objective functions, locally trained via stochastic gradient descent (SGD), we achieve a strong utility-privacy tradeoff.
translated by 谷歌翻译
隐私和沟通效率是联邦神经网络培训中的重要挑战,并将它们组合仍然是一个公开的问题。在这项工作中,我们开发了一种统一高度压缩通信和差异隐私(DP)的方法。我们引入基于相对熵编码(REC)到联合设置的压缩技术。通过对REC进行微小的修改,我们获得了一种可怕的私立学习算法,DP-REC,并展示了如何计算其隐私保证。我们的实验表明,DP-REC大大降低了通信成本,同时提供与最先进的隐私保证。
translated by 谷歌翻译
联合学习允许一组用户在私人训练数据集中培训深度神经网络。在协议期间,数据集永远不会留下各个用户的设备。这是通过要求每个用户向中央服务器发送“仅”模型更新来实现,从而汇总它们以更新深神经网络的参数。然而,已经表明,每个模型更新都具有关于用户数据集的敏感信息(例如,梯度反转攻击)。联合学习的最先进的实现通过利用安全聚合来保护这些模型更新:安全监控协议,用于安全地计算用户的模型更新的聚合。安全聚合是关键,以保护用户的隐私,因为它会阻碍服务器学习用户提供的个人模型更新的源,防止推断和数据归因攻击。在这项工作中,我们表明恶意服务器可以轻松地阐明安全聚合,就像后者未到位一样。我们设计了两种不同的攻击,能够在参与安全聚合的用户数量上,独立于参与安全聚合的用户数。这使得它们在大规模现实世界联邦学习应用中的具体威胁。攻击是通用的,不瞄准任何特定的安全聚合协议。即使安全聚合协议被其理想功能替换为提供完美的安全性的理想功能,它们也同样有效。我们的工作表明,安全聚合与联合学习相结合,当前实施只提供了“虚假的安全感”。
translated by 谷歌翻译
联合学习(FL)是一种从分散数据源训练机器学习模型的技术。我们根据当地的隐私约束概念研究FL,该概念通过在离开客户之前使数据混淆,为敏感数据披露提供了强烈的保护。我们确定了设计实用隐私的FL算法的两个主要问题:沟通效率和高维度的兼容性。然后,我们开发一种基于梯度的学习算法,称为\ emph {sqsgd}(选择性量化的随机梯度下降),以解决这两个问题。所提出的算法基于一种新颖的隐私量化方案,该方案使用每个客户每个维度的恒定位数。然后,我们通过三种方式改进基本算法:首先,我们采用梯度亚采样策略,同时在固定隐私预算下提供更好的培训性能和较小的沟通成本。其次,我们利用随机旋转作为预处理步骤来减少量化误差。第三,采用了自适应梯度标准上限策略来提高准确性和稳定训练。最后,在基准数据集中证明了拟议框架的实用性。实验结果表明,SQSGD成功地学习了Lenet和Resnet等局部隐私约束的大型模型。此外,凭借固定的隐私和通信水平,SQSGD的性能显着主导了各种基线算法。
translated by 谷歌翻译
Differentially private federated learning (DP-FL) has received increasing attention to mitigate the privacy risk in federated learning. Although different schemes for DP-FL have been proposed, there is still a utility gap. Employing central Differential Privacy in FL (CDP-FL) can provide a good balance between the privacy and model utility, but requires a trusted server. Using Local Differential Privacy for FL (LDP-FL) does not require a trusted server, but suffers from lousy privacy-utility trade-off. Recently proposed shuffle DP based FL has the potential to bridge the gap between CDP-FL and LDP-FL without a trusted server; however, there is still a utility gap when the number of model parameters is large. In this work, we propose OLIVE, a system that combines the merits from CDP-FL and LDP-FL by leveraging Trusted Execution Environment (TEE). Our main technical contributions are the analysis and countermeasures against the vulnerability of TEE in OLIVE. Firstly, we theoretically analyze the memory access pattern leakage of OLIVE and find that there is a risk for sparsified gradients, which is common in FL. Secondly, we design an inference attack to understand how the memory access pattern could be linked to the training data. Thirdly, we propose oblivious yet efficient algorithms to prevent the memory access pattern leakage in OLIVE. Our experiments on real-world data demonstrate that OLIVE is efficient even when training a model with hundreds of thousands of parameters and effective against side-channel attacks on TEE.
translated by 谷歌翻译
联合学习(FL)是一个分布式学习范式,使相互不信任的客户能够协作培训通用的机器学习模型。客户数据隐私在FL中至关重要。同时,必须保护模型免受对抗客户的中毒攻击。现有解决方案孤立地解决了这两个问题。我们提出了FedPerm,这是一种新的FL算法,它通过结合一种新型的内部模型参数改组技术来解决这两个问题,该技术可以放大数据隐私,并基于私人信息检索(PIR)技术,该技术允许允许对客户模型更新的加密聚合。这些技术的组合进一步有助于联邦服务器约束从客户端的参数更新,从而减少对抗性客户的模型中毒攻击的影响。我们进一步介绍了Fedperm独特的超参数,可以有效地使用Model Utilities进行计算开销。我们对MNIST数据集的经验评估表明,FEDPERM对FL中现有差异隐私(DP)执法解决方案的有效性。
translated by 谷歌翻译
我们设计可扩展的算法,以私下生成从数百万用户设备的分散数据的位置热量。它旨在确保在服务提供商对服务提供商可见之前的差异隐私,同时保持高数据准确性和最小化用户设备的资源消耗。为实现这一目标,我们根据安全多方计算领域的最新结果重新审视分布式差异隐私概念,并设计用于位置分析的可扩展和自适应分布式差分隐私方法。关于公共位置数据集的评估表明,该方法成功地从数百万用户样本中成功地生成了大量的客户样本,最坏的客户端通信开销明显小于现有的类似准确性的现有最先进的私有协议。
translated by 谷歌翻译
Federated learning facilitates the collaborative training of models without the sharing of raw data. However, recent attacks demonstrate that simply maintaining data locality during training processes does not provide sufficient privacy guarantees. Rather, we need a federated learning system capable of preventing inference over both the messages exchanged during training and the final trained model while ensuring the resulting model also has acceptable predictive accuracy. Existing federated learning approaches either use secure multiparty computation (SMC) which is vulnerable to inference or differential privacy which can lead to low accuracy given a large number of parties with relatively small amounts of data each. In this paper, we present an alternative approach that utilizes both differential privacy and SMC to balance these trade-offs. Combining differential privacy with secure multiparty computation enables us to reduce the growth of noise injection as the number of parties increases without sacrificing privacy while maintaining a pre-defined rate of trust. Our system is therefore a scalable approach that protects against inference threats and produces models with high accuracy. Additionally, our system can be used to train a variety of machine learning models, which we validate with experimental results on 3 different machine learning algorithms. Our experiments demonstrate that our approach out-performs state of the art solutions. CCS CONCEPTS• Security and privacy → Privacy-preserving protocols; Trust frameworks; • Computing methodologies → Learning settings.
translated by 谷歌翻译
我们考虑对跨用户设备分发的私人数据培训模型。为了确保隐私,我们添加了设备的噪声并使用安全的聚合,以便仅向服务器揭示嘈杂的总和。我们提出了一个综合的端到端系统,该系统适当地离散数据并在执行安全聚合之前添加离散的高斯噪声。我们为离散高斯人的总和提供了新的隐私分析,并仔细分析了数据量化和模块化求和算术的影响。我们的理论保证突出了沟通,隐私和准确性之间的复杂张力。我们广泛的实验结果表明,我们的解决方案基本上能够将准确性与中央差分隐私相匹配,而每个值的精度少于16位。
translated by 谷歌翻译
Deep neural networks have strong capabilities of memorizing the underlying training data, which can be a serious privacy concern. An effective solution to this problem is to train models with differential privacy, which provides rigorous privacy guarantees by injecting random noise to the gradients. This paper focuses on the scenario where sensitive data are distributed among multiple participants, who jointly train a model through federated learning (FL), using both secure multiparty computation (MPC) to ensure the confidentiality of each gradient update, and differential privacy to avoid data leakage in the resulting model. A major challenge in this setting is that common mechanisms for enforcing DP in deep learning, which inject real-valued noise, are fundamentally incompatible with MPC, which exchanges finite-field integers among the participants. Consequently, most existing DP mechanisms require rather high noise levels, leading to poor model utility. Motivated by this, we propose Skellam mixture mechanism (SMM), an approach to enforce DP on models built via FL. Compared to existing methods, SMM eliminates the assumption that the input gradients must be integer-valued, and, thus, reduces the amount of noise injected to preserve DP. Further, SMM allows tight privacy accounting due to the nice composition and sub-sampling properties of the Skellam distribution, which are key to accurate deep learning with DP. The theoretical analysis of SMM is highly non-trivial, especially considering (i) the complicated math of differentially private deep learning in general and (ii) the fact that the mixture of two Skellam distributions is rather complex, and to our knowledge, has not been studied in the DP literature. Extensive experiments on various practical settings demonstrate that SMM consistently and significantly outperforms existing solutions in terms of the utility of the resulting model.
translated by 谷歌翻译
联邦学习(FL)引起了人们对在存储在多个用户中的数据中启用隐私的机器学习的兴趣,同时避免将数据移动到偏离设备上。但是,尽管数据永远不会留下用户的设备,但仍然无法保证隐私,因为用户培训数据的重大计算以训练有素的本地模型的形式共享。最近,这些本地模型通过不同的隐私攻击(例如模型反演攻击)构成了实质性的隐私威胁。作为一种补救措施,通过保证服务器只能学习全局聚合模型更新,而不是单个模型更新,从而开发了安全汇总(SA)作为保护佛罗里达隐私的框架。尽管SA确保没有泄漏有关单个模型更新超出汇总模型更新的其他信息,但对于SA实际上可以提供多少私密性fl,没有正式的保证;由于有关单个数据集的信息仍然可以通过在服务器上计算的汇总模型泄漏。在这项工作中,我们对使用SA的FL的正式隐私保证进行了首次分析。具体而言,我们使用共同信息(MI)作为定量度量,并在每个用户数据集的信息上可以通过汇总的模型更新泄漏有关多少信息。当使用FEDSGD聚合算法时,我们的理论界限表明,隐私泄漏量随着SA参与FL的用户数量而线性减少。为了验证我们的理论界限,我们使用MI神经估计量来凭经验评估MNIST和CIFAR10数据集的不同FL设置下的隐私泄漏。我们的实验验证了FEDSGD的理论界限,随着用户数量和本地批量的增长,隐私泄漏的减少,并且随着培训回合的数量,隐私泄漏的增加。
translated by 谷歌翻译
智能仪表测量值虽然对于准确的需求预测至关重要,但仍面临一些缺点,包括消费者的隐私,数据泄露问题,仅举几例。最近的文献探索了联合学习(FL)作为一种有前途的隐私机器学习替代方案,该替代方案可以协作学习模型,而无需将私人原始数据暴露于短期负载预测中。尽管有着美德,但标准FL仍然容易受到棘手的网络威胁,称为拜占庭式攻击,这是由错误和/或恶意客户进行的。因此,为了提高联邦联邦短期负载预测对拜占庭威胁的鲁棒性,我们开发了一个最先进的基于私人安全的FL框架,以确保单个智能电表的数据的隐私,同时保护FL的安全性模型和架构。我们提出的框架利用了通过符号随机梯度下降(SignsGD)算法的梯度量化的想法,在本地模型培训后,客户仅将梯度的“符号”传输到控制中心。当我们通过涉及一组拜占庭攻击模型的基准神经网络的实验突出显示时,我们提出的方法会非常有效地减轻此类威胁,从而优于常规的FED-SGD模型。
translated by 谷歌翻译
可扩展性和隐私是交叉设备联合学习(FL)系统的两个关键问题。在这项工作中,我们确定了FL中的客户端更新的同步流动聚合不能高效地缩放到几百个并行培训之外。它导致ModelPerforce和训练速度的回报递减,Ampanysto大批量培训。另一方面,FL(即异步FL)中的客户端更新的异步聚合减轻了可扩展性问题。但是,聚合个性链子更新与安全聚合不兼容,这可能导致系统的不良隐私水平。为了解决这些问题,我们提出了一种新颖的缓冲异步聚合方法FedBuff,这是不可知的优化器的选择,并结合了同步和异步FL的最佳特性。我们经验证明FEDBuff比同步FL更有效,比异步FL效率更高3.3倍,同时兼容保留保护技术,如安全聚合和差异隐私。我们在平滑的非凸设置中提供理论融合保证。最后,我们显示在差异私有培训下,FedBuff可以在低隐私设置下占FEDAVGM并实现更高隐私设置的相同实用程序。
translated by 谷歌翻译
在联合学习(FL)中,数据不会在联合培训机器学习模型时留下个人设备。相反,这些设备与中央党(例如,公司)共享梯度。因为数据永远不会“离开”个人设备,因此FL作为隐私保留呈现。然而,最近显示这种保护是一个薄的外观,甚至是一种被动攻击者观察梯度可以重建各个用户的数据。在本文中,我们争辩说,事先工作仍然很大程度上低估了FL的脆弱性。这是因为事先努力专门考虑被动攻击者,这些攻击者是诚实但好奇的。相反,我们介绍了一个活跃和不诚实的攻击者,作为中央会,他们能够在用户计算模型渐变之前修改共享模型的权重。我们称之为修改的重量“陷阱重量”。我们的活跃攻击者能够完全恢复用户数据,并在接近零成本时:攻击不需要复杂的优化目标。相反,它利用了模型梯度的固有数据泄漏,并通过恶意改变共享模型的权重来放大这种效果。这些特异性使我们的攻击能够扩展到具有大型迷你批次数据的模型。如果来自现有工作的攻击者需要小时才能恢复单个数据点,我们的方法需要毫秒来捕获完全连接和卷积的深度神经网络的完整百分之批次数据。最后,我们考虑缓解。我们观察到,FL中的差异隐私(DP)的当前实现是有缺陷的,因为它们明确地信任中央会,并在增加DP噪音的关键任务,因此不提供对恶意中央党的保护。我们还考虑其他防御,并解释为什么它们类似地不足。它需要重新设计FL,为用户提供任何有意义的数据隐私。
translated by 谷歌翻译
我们考虑使用迷你批量梯度进行差异隐私(DP)的培训模型。现有的最先进的差异私有随机梯度下降(DP-SGD)需要通过采样或洗机来获得最佳隐私/准确性/计算权衡的隐私放大。不幸的是,在重要的实际情况下,精确采样和洗牌的精确要求可能很难获得,特别是联邦学习(FL)。我们设计和分析跟随 - 正规的领导者(DP-FTRL)的DP变体,其比较(理论上和经验地)与放大的DP-SGD相比,同时允许更灵活的数据访问模式。DP-FTRL不使用任何形式的隐私放大。该代码可在https://github.com/google-Research/federated/tree/master/dp_ftrl和https://github.com/google-reesearch/dp-ftrl处获得。
translated by 谷歌翻译
联合学习是一种协作机器学习,参与客户在本地处理他们的数据,仅与协作模型共享更新。这使得能够建立隐私意识的分布式机器学习模型等。目的是通过最大程度地减少一组客户本地存储的数据集的成本函数来优化统计模型的参数。这个过程使客户遇到了两个问题:私人信息的泄漏和模型的个性化缺乏。另一方面,随着分析数据的最新进步,人们对侵犯参与客户的隐私行为的关注激增。为了减轻这种情况,差异隐私及其变体是提供正式隐私保证的标准。客户通常代表非常异构的社区,并拥有非常多样化的数据。因此,与FL社区的最新重点保持一致,以为代表其多样性的用户建立个性化模型框架,这对于防止潜在威胁免受客户的敏感和个人信息而言也是至关重要的。 $ d $ - 私人是对地理位置可区分性的概括,即最近普及的位置隐私范式,它使用了一种基于公制的混淆技术,可保留原始数据的空间分布。为了解决保护客户隐私并允许个性化模型培训以增强系统的公平性和实用性的问题,我们提出了一种提供团体隐私性的方法在FL的框架下。我们为对现实世界数据集的适用性和实验验证提供了理论上的理由,以说明该方法的工作。
translated by 谷歌翻译
已经提出了安全的多方计算(MPC),以允许多个相互不信任的数据所有者在其合并数据上共同训练机器学习(ML)模型。但是,通过设计,MPC协议忠实地计算了训练功能,对抗性ML社区已证明该功能泄漏了私人信息,并且可以在中毒攻击中篡改。在这项工作中,我们认为在我们的框架中实现的模型合奏是一种称为Safenet的框架,是MPC的高度无限方法,可以避免许多对抗性ML攻击。 MPC培训中所有者之间数据的自然分区允许这种方法在训练时间高度可扩展,可证明可保护免受中毒攻击的保护,并证明可以防御许多隐私攻击。我们展示了Safenet对在端到端和转移学习方案训练的几个机器学习数据集和模型上中毒的效率,准确性和韧性。例如,Safenet可显着降低后门攻击的成功,同时获得$ 39 \ times $ $的培训,$ 36 \ times $ $ $少于达尔斯科夫(Dalskov)等人的四方MPC框架。我们的实验表明,即使在许多非IID设置中,结合也能保留这些好处。结合的简单性,廉价的设置和鲁棒性属性使其成为MPC私下培训ML模型的强大首选。
translated by 谷歌翻译