在本文中,我们考虑了一种用于主成分分析(PCA)的新变体,旨在同时捕获因子负载的分组和/或稀疏结构。为了实现这些目标,我们采用非凸截面的正则化,具有自然可调的稀疏性和分组效应,并提出了特征分组和稀疏主组件分析(FGSPCA)。所提出的FGSPCA方法鼓励具有相似值的因子负载,以将特征分组或特征零值组分成特征选择的差异均匀组,从而有助于降低模型的复杂性和增加模型解释。通常,现有的结构化PCA方法需要先验知识来构建正则化项。但是,提出的FGSPCA可以同时捕获因子负载的分组和/或稀疏结构,而无需任何事先信息。为了解决所得的非凸优化问题,我们提出了一种交替的算法,该算法结合了Convex编程,增强的Lagrange方法和坐标下降方法。实验结果证明了新方法在合成和现实世界数据集上的有希望的性能和效率。可以在github {https://github.com/higeeks/fgspca}上找到FGSPCA的R实现。
translated by 谷歌翻译
高斯图形模型(GGM)广泛用于基因组学,生态学,心理测量学等各个领域的探索性数据分析。在高维度的情况下,当变量数量超过观测值数量的数量级时,GGM的估计是一个困难且不稳定的优化问题。变量或变量选择的聚类通常是在GGM估计之前进行的。我们提出了一种新方法,允许同时推断出分层聚类结构和描述层次结构每个级别独立性结构的图。该方法基于解决凸优化问题,该问题结合了图形套索惩罚与融合型套索惩罚。提出了有关真实和合成数据的结果。
translated by 谷歌翻译
We study a multi-factor block model for variable clustering and connect it to the regularized subspace clustering by formulating a distributionally robust version of the nodewise regression. To solve the latter problem, we derive a convex relaxation, provide guidance on selecting the size of the robust region, and hence the regularization weighting parameter, based on the data, and propose an ADMM algorithm for implementation. We validate our method in an extensive simulation study. Finally, we propose and apply a variant of our method to stock return data, obtain interpretable clusters that facilitate portfolio selection and compare its out-of-sample performance with other clustering methods in an empirical study.
translated by 谷歌翻译
现代高维方法经常采用“休稀稀物”的原则,而在监督多元学习统计学中可能面临着大量非零系数的“密集”问题。本文提出了一种新的聚类减少秩(CRL)框架,其施加了两个联合矩阵规范化,以自动分组构建预测因素的特征。 CRL比低级别建模更具可解释,并放松变量选择中的严格稀疏假设。在本文中,提出了新的信息 - 理论限制,揭示了寻求集群的内在成本,以及多元学习中的维度的祝福。此外,开发了一种有效的优化算法,其执行子空间学习和具有保证融合的聚类。所获得的定点估计器虽然不一定是全局最佳的,但在某些规则条件下享有超出标准似然设置的所需的统计准确性。此外,提出了一种新的信息标准,以及其无垢形式,用于集群和秩选择,并且具有严格的理论支持,而不假设无限的样本大小。广泛的模拟和实数据实验证明了所提出的方法的统计准确性和可解释性。
translated by 谷歌翻译
许多现代数据集,从神经影像和地统计数据等领域都以张量数据的随机样本的形式来说,这可以被理解为对光滑的多维随机功能的嘈杂观察。来自功能数据分析的大多数传统技术被维度的诅咒困扰,并且随着域的尺寸增加而迅速变得棘手。在本文中,我们提出了一种学习从多维功能数据样本的持续陈述的框架,这些功能是免受诅咒的几种表现形式的。这些表示由一组可分离的基函数构造,该函数被定义为最佳地适应数据。我们表明,通过仔细定义的数据的仔细定义的减少转换的张测仪分解可以有效地解决所得到的估计问题。使用基于差分运算符的惩罚,并入粗糙的正则化。也建立了相关的理论性质。在模拟研究中证明了我们对竞争方法的方法的优点。我们在神经影像动物中得出真正的数据应用。
translated by 谷歌翻译
我们引入了一种新的经验贝叶斯方法,用于大规模多线性回归。我们的方法结合了两个关键思想:(i)使用灵活的“自适应收缩”先验,该先验近似于正常分布的有限混合物,近似于正常分布的非参数家族; (ii)使用变分近似来有效估计先前的超参数并计算近似后期。将这两个想法结合起来,将快速,灵活的方法与计算速度相当,可与快速惩罚的回归方法(例如Lasso)相当,并在各种场景中具有出色的预测准确性。此外,我们表明,我们方法中的后验平均值可以解释为解决惩罚性回归问题,并通过直接解决优化问题(而不是通过交叉验证来调整)从数据中学到的惩罚函数的精确形式。 。我们的方法是在r https://github.com/stephenslab/mr.ash.ash.alpha的r软件包中实现的
translated by 谷歌翻译
本文提出了一种基于图形的正则化回归估计器 - 分层特征回归(HFR) - 从机器学习和图论域名的洞察力调动洞察力,以估算线性回归的鲁棒参数。估计器构造一个监督的特征图,该监督特征图沿其边缘分解参数,首先调整常见变化并连续地将特殊性模式结合到拟合过程中。图形结构具有对组靶标的参数收缩的影响,其中收缩程度由肝异常的控制,并且基团组合物以及收缩靶数是内源性的。该方法提供了丰富的资源,以便在数据中的潜在效果结构的视觉探索,并与一系列经验和模拟回归任务的常用正则化技术面板相比,展示了良好的预测精度和多功能性。
translated by 谷歌翻译
Sparse principal component analysis (SPCA) has been widely used for dimensionality reduction and feature extraction in high-dimensional data analysis. Despite there are many methodological and theoretical developments in the past two decades, the theoretical guarantees of the popular SPCA algorithm proposed by Zou, Hastie & Tibshirani (2006) based on the elastic net are still unknown. We aim to close this important theoretical gap in this paper. We first revisit the SPCA algorithm of Zou et al. (2006) and present our implementation. Also, we study a computationally more efficient variant of the SPCA algorithm in Zou et al. (2006) that can be considered as the limiting case of SPCA. We provide the guarantees of convergence to a stationary point for both algorithms. We prove that, under a sparse spiked covariance model, both algorithms can recover the principal subspace consistently under mild regularity conditions. We show that their estimation error bounds match the best available bounds of existing works or the minimax rates up to some logarithmic factors. Moreover, we demonstrate the numerical performance of both algorithms in simulation studies.
translated by 谷歌翻译
将回归系数融合到均匀组中可以揭示在每个组内共享共同值的系数。这种扩展均匀性降低了参数空间的内在尺寸,并释放统计学精度。我们提出并调查了一个名为$ l_0 $ -fusion的新的组合分组方法,这些方法可用于混合整数优化(MIO)。在统计方面,我们识别称为分组灵敏度的基本量,该基本量为恢复真实组的难度。我们展示$ l_0 $ -fusion在分组灵敏度的最弱需求下实现了分组一致性:如果违反了这一要求,则小组拼写的最低风险将无法收敛到零。此外,我们展示了在高维制度中,可以使用无需任何必要的统计效率损失的确保筛选特征,同时降低计算成本的校正特征耦合耦合的$ L_0 $ -Fusion。在算法方面,我们为$ l_0 $ -fusion提供了一个mio配方,以及温暖的开始策略。仿真和实际数据分析表明,在分组准确性方面,$ L_0 $ -FUSUS展示其竞争对手的优势。
translated by 谷歌翻译
我们考虑使用共享结构估算两个功能无向图形模型之间的差异的问题。在许多应用中,数据自然被认为是随机函数的向量而不是标量的矢量。例如,脑电图(EEG)数据更适当地被视为时间函数。在这样的问题中,不仅可以每个样本测量的函数数量大,而且每个功能都是自身是无限尺寸对象,使估计模型参数具有挑战性。这进一步复杂于曲线通常仅在离散时间点观察到。我们首先定义一个功能差异图,捕获两个功能图形模型之间的差异,并在功能性差分图定义良好时正式表征。然后,我们提出了一种方法,软件,直接估计功能差异图,而不首先估计每个图形。这在各个图形是密集的情况下,这是特别有益的,但差分图是稀疏的。我们表明,融合始终估计功能差图,即使在全面观察和离散的功能路径的高维设置中也是如此。我们通过仿真研究说明了我们方法的有限样本性质。我们还提出了一种竞争方法,该方法是关节功能图形套索,它概括了关节图形套索到功能设置。最后,我们将我们的方法应用于EEG数据,以揭示一群含有酒精使用障碍和对照组的个体之间的功能性脑连接的差异。
translated by 谷歌翻译
我们提出了一种估计具有标称分类数据的高维线性模型的方法。我们的估算器,称为范围,通过使其相应的系数完全相等来融合水平。这是通过对分类变量的系数的阶数统计之间的差异之间的差异来实现这一点,从而聚类系数。我们提供了一种算法,用于精确和有效地计算在具有潜在许多级别的单个变量的情况下的总体上的最小值的全局最小值,并且在多变量情况下在块坐标血管下降过程中使用它。我们表明,利用未知级别融合的Oracle最小二乘解决方案是具有高概率的坐标血缘的极限点,只要真正的级别具有一定的最小分离;已知这些条件在单变量案例中最小。我们展示了在一系列实际和模拟数据集中的范围的有利性能。 R包的R包Catreg实现线性模型的范围,也可以在CRAN上提供逻辑回归的版本。
translated by 谷歌翻译
监督字典学习(SDL)是一种经典的机器学习方法,同时寻求特征提取和分类任务,不一定是先验的目标。 SDL的目的是学习类歧视性词典,这是一组潜在特征向量,可以很好地解释特征以及观察到的数据的标签。在本文中,我们提供了SDL的系统研究,包括SDL的理论,算法和应用。首先,我们提供了一个新颖的框架,该框架将“提升” SDL作为组合因子空间中的凸问题,并提出了一种低级别的投影梯度下降算法,该算法将指数成倍收敛于目标的全局最小化器。我们还制定了SDL的生成模型,并根据高参数制度提供真实参数的全局估计保证。其次,我们被视为一个非convex约束优化问题,我们为SDL提供了有效的块坐标下降算法,该算法可以保证在$ O(\ varepsilon^{ - 1}(\ log)中找到$ \ varepsilon $ - 定位点(\ varepsilon \ varepsilon^{ - 1})^{2})$ iterations。对于相应的生成模型,我们为受约束和正则化的最大似然估计问题建立了一种新型的非反应局部一致性结果,这可能是独立的。第三,我们将SDL应用于监督主题建模和胸部X射线图像中的肺炎检测中,以进行不平衡的文档分类。我们还提供了模拟研究,以证明当最佳的重建性和最佳判别词典之间存在差异时,SDL变得更加有效。
translated by 谷歌翻译
在本文中,我们应对PCA:异质性的重大挑战。当从不同趋势的不同来源收集数据的同时仍具有一致性时,提取共享知识的同时保留每个来源的独特功能至关重要。为此,我们提出了个性化的PCA(PERPCA),该PCA(PERPCA)使用相互正交的全球和本地主要组件来编码唯一的和共享的功能。我们表明,在轻度条件下,即使协方差矩阵截然不同,也可以通过约束优化问题来识别和恢复独特的和共享的特征。此外,我们设计了一种完全由分布式stiefel梯度下降来解决问题的完全联合算法。该算法引入了一组新的操作,称为通用缩回,以处理正交性约束,并且仅要求跨来源共享全局PC。我们证明了在合适的假设下算法的线性收敛。全面的数值实验突出了PERPCA在特征提取和异质数据集预测方面的出色性能。作为将共享和唯一功能从异质数据集解除共享和独特功能的系统方法,PERPCA在几种任务中找到了应用程序,包括视频细分,主题提取和分布式聚类。
translated by 谷歌翻译
Latent factor model estimation typically relies on either using domain knowledge to manually pick several observed covariates as factor proxies, or purely conducting multivariate analysis such as principal component analysis. However, the former approach may suffer from the bias while the latter can not incorporate additional information. We propose to bridge these two approaches while allowing the number of factor proxies to diverge, and hence make the latent factor model estimation robust, flexible, and statistically more accurate. As a bonus, the number of factors is also allowed to grow. At the heart of our method is a penalized reduced rank regression to combine information. To further deal with heavy-tailed data, a computationally attractive penalized robust reduced rank regression method is proposed. We establish faster rates of convergence compared with the benchmark. Extensive simulations and real examples are used to illustrate the advantages.
translated by 谷歌翻译
监督主体组件分析(SPCA)的方法旨在将标签信息纳入主成分分析(PCA),以便提取的功能对于预测感兴趣的任务更有用。SPCA的先前工作主要集中在优化预测误差上,并忽略了提取功能解释的最大化方差的价值。我们为SPCA提出了一种新的方法,该方法共同解决了这两个目标,并从经验上证明我们的方法主导了现有方法,即在预测误差和变异方面都超越了它们的表现。我们的方法可容纳任意监督的学习损失,并通过统计重新制定提供了广义线性模型的新型低级扩展。
translated by 谷歌翻译
多变量分析(MVA)包括用于特征提取的众所周知的方法,该方法提取,其利用表示数据的输入变量之间的相关性。大多数此类方法享有的一个重要属性是提取特征之间的不相关性。最近,MVA方法的正则化版本在文献中出现,主要是为了获得解决方案的解释性。在这些情况下,不再以封闭的方式获得解决方案,并且经常使用更复杂的优化方法,依赖于两个步骤的迭代。本文回到了替代方法来解决这个迭代问题。这种方法的主要新颖性在于保持原始方法的几个属性,最值得注意的是提取特征的不相关性。在此框架下,我们提出了一种新的方法,该方法利用L-21规范在特征提取过程中执行变量选择。不同问题的实验结果证实了与现有化配方的拟议配方的优点。
translated by 谷歌翻译
基于梯度的高参数调整的优化方法可确保理论收敛到固定解决方案时,对于固定的上层变量值,双光线程序的下层级别强烈凸(LLSC)和平滑(LLS)。对于在许多机器学习算法中调整超参数引起的双重程序,不满足这种情况。在这项工作中,我们开发了一种基于不精确度(VF-IDCA)的基于依次收敛函数函数算法。我们表明,该算法从一系列的超级参数调整应用程序中实现了无LLSC和LLS假设的固定解决方案。我们的广泛实验证实了我们的理论发现,并表明,当应用于调子超参数时,提出的VF-IDCA会产生较高的性能。
translated by 谷歌翻译
Sparse reduced rank regression is an essential statistical learning method. In the contemporary literature, estimation is typically formulated as a nonconvex optimization that often yields to a local optimum in numerical computation. Yet, their theoretical analysis is always centered on the global optimum, resulting in a discrepancy between the statistical guarantee and the numerical computation. In this research, we offer a new algorithm to address the problem and establish an almost optimal rate for the algorithmic solution. We also demonstrate that the algorithm achieves the estimation with a polynomial number of iterations. In addition, we present a generalized information criterion to simultaneously ensure the consistency of support set recovery and rank estimation. Under the proposed criterion, we show that our algorithm can achieve the oracle reduced rank estimation with a significant probability. The numerical studies and an application in the ovarian cancer genetic data demonstrate the effectiveness and scalability of our approach.
translated by 谷歌翻译
约束的张量和矩阵分子化模型允许从多道数据中提取可解释模式。因此,对于受约束的低秩近似度的可识别性特性和有效算法是如此重要的研究主题。这项工作涉及低秩近似的因子矩阵的列,以众所周知的和可能的过度顺序稀疏,该模型包括基于字典的低秩近似(DLRA)。虽然早期的贡献集中在候选列字典内的发现因子列,即一稀疏的近似值,这项工作是第一个以大于1的稀疏性解决DLRA。我建议专注于稀疏编码的子问题,在解决DLRA时出现的混合稀疏编码(MSC)以交替的优化策略在解决DLRA时出现。提供了基于稀疏编码启发式的几种算法(贪婪方法,凸起放松)以解决MSC。在模拟数据上评估这些启发式的性能。然后,我展示了如何基于套索来调整一个有效的MSC求解器,以计算高光谱图像处理和化学测量学的背景下的基于词典的基于矩阵分解和规范的多adic分解。这些实验表明,DLRA扩展了低秩近似的建模能力,有助于降低估计方差并提高估计因子的可识别性和可解释性。
translated by 谷歌翻译
分析电子健康记录(EHR)数据通常会遇到具有大量稀有二进制特征的统计学习,尤其是在使用先前的医学诊断和程序的疾病开始建模时。众所周知,处理最终的高度稀疏和大规模的二进制功能矩阵是具有挑战性的,因为传统方法可能缺乏测试和模型拟合中的不一致性,而机器学习方法可能会遭受产生可解释的结果或临床上无能为力的障碍风险因素。为了改善基于EHR的建模并利用疾病分类的自然层次结构,我们提出了树木制定的特征选择和逻辑聚合方法,用于具有稀有二进制特征的大规模回归,在这种情况下,不仅可以通过稀疏追求实现尺寸降低。还有``或''的逻辑运算符的聚合启动子。我们将组合问题转换为线性约束的正规化估计,该估计可以通过理论保证实现可扩展的计算。在使用EHR数据的自杀风险研究中,我们的方法能够在国际疾病的诊断层次结构指导下选择和汇总先前的心理健康诊断。通过平衡EHR诊断记录的稀有性和特异性,我们的策略改善了预测和模型解释。我们确定了重要的高级类别和心理健康状况的子类别,并同时确定每个人在预测自杀风险时所需的特异性水平。
translated by 谷歌翻译