Sparse principal component analysis (SPCA) has been widely used for dimensionality reduction and feature extraction in high-dimensional data analysis. Despite there are many methodological and theoretical developments in the past two decades, the theoretical guarantees of the popular SPCA algorithm proposed by Zou, Hastie & Tibshirani (2006) based on the elastic net are still unknown. We aim to close this important theoretical gap in this paper. We first revisit the SPCA algorithm of Zou et al. (2006) and present our implementation. Also, we study a computationally more efficient variant of the SPCA algorithm in Zou et al. (2006) that can be considered as the limiting case of SPCA. We provide the guarantees of convergence to a stationary point for both algorithms. We prove that, under a sparse spiked covariance model, both algorithms can recover the principal subspace consistently under mild regularity conditions. We show that their estimation error bounds match the best available bounds of existing works or the minimax rates up to some logarithmic factors. Moreover, we demonstrate the numerical performance of both algorithms in simulation studies.
translated by 谷歌翻译
Sparse reduced rank regression is an essential statistical learning method. In the contemporary literature, estimation is typically formulated as a nonconvex optimization that often yields to a local optimum in numerical computation. Yet, their theoretical analysis is always centered on the global optimum, resulting in a discrepancy between the statistical guarantee and the numerical computation. In this research, we offer a new algorithm to address the problem and establish an almost optimal rate for the algorithmic solution. We also demonstrate that the algorithm achieves the estimation with a polynomial number of iterations. In addition, we present a generalized information criterion to simultaneously ensure the consistency of support set recovery and rank estimation. Under the proposed criterion, we show that our algorithm can achieve the oracle reduced rank estimation with a significant probability. The numerical studies and an application in the ovarian cancer genetic data demonstrate the effectiveness and scalability of our approach.
translated by 谷歌翻译
通过在线规范相关性分析的问题,我们提出了\ emph {随机缩放梯度下降}(SSGD)算法,以最小化通用riemannian歧管上的随机功能的期望。 SSGD概括了投影随机梯度下降的思想,允许使用缩放的随机梯度而不是随机梯度。在特殊情况下,球形约束的特殊情况,在广义特征向量问题中产生的,我们建立了$ \ sqrt {1 / t} $的令人反感的有限样本,并表明该速率最佳最佳,直至具有积极的积极因素相关参数。在渐近方面,一种新的轨迹平均争论使我们能够实现局部渐近常态,其速率与鲁普特 - Polyak-Quaditsky平均的速率匹配。我们将这些想法携带在一个在线规范相关分析,从事文献中的第一次获得了最佳的一次性尺度算法,其具有局部渐近融合到正常性的最佳一次性尺度算法。还提供了用于合成数据的规范相关分析的数值研究。
translated by 谷歌翻译
组选择的最佳子集(BSG)是选择一小部分非重叠组以在响应变量上获得最佳解释性的过程。它吸引了越来越多的关注,并且在实践中具有深远的应用。但是,由于BSG在高维环境中的计算棘手性,开发用于解决BSGS的有效算法仍然是研究热点。在本文中,我们提出了一种划分的算法,该算法迭代地检测相关组并排除了无关的组。此外,再加上新的组信息标准,我们开发了一种自适应算法来确定最佳模型大小。在轻度条件下,我们的算法可以在多项式时间内以高概率确定组的最佳子集是可以证明的。最后,我们通过将它们与合成数据集和现实世界中的几种最新算法进行比较来证明我们的方法的效率和准确性。
translated by 谷歌翻译
High-dimensional data can often display heterogeneity due to heteroscedastic variance or inhomogeneous covariate effects. Penalized quantile and expectile regression methods offer useful tools to detect heteroscedasticity in high-dimensional data. The former is computationally challenging due to the non-smooth nature of the check loss, and the latter is sensitive to heavy-tailed error distributions. In this paper, we propose and study (penalized) robust expectile regression (retire), with a focus on iteratively reweighted $\ell_1$-penalization which reduces the estimation bias from $\ell_1$-penalization and leads to oracle properties. Theoretically, we establish the statistical properties of the retire estimator under two regimes: (i) low-dimensional regime in which $d \ll n$; (ii) high-dimensional regime in which $s\ll n\ll d$ with $s$ denoting the number of significant predictors. In the high-dimensional setting, we carefully characterize the solution path of the iteratively reweighted $\ell_1$-penalized retire estimation, adapted from the local linear approximation algorithm for folded-concave regularization. Under a mild minimum signal strength condition, we show that after as many as $\log(\log d)$ iterations the final iterate enjoys the oracle convergence rate. At each iteration, the weighted $\ell_1$-penalized convex program can be efficiently solved by a semismooth Newton coordinate descent algorithm. Numerical studies demonstrate the competitive performance of the proposed procedure compared with either non-robust or quantile regression based alternatives.
translated by 谷歌翻译
在本文中,我们利用过度参数化来设计高维单索索引模型的无规矩算法,并为诱导的隐式正则化现象提供理论保证。具体而言,我们研究了链路功能是非线性且未知的矢量和矩阵单索引模型,信号参数是稀疏向量或低秩对称矩阵,并且响应变量可以是重尾的。为了更好地理解隐含正规化的角色而没有过度的技术性,我们假设协变量的分布是先验的。对于载体和矩阵设置,我们通过采用分数函数变换和专为重尾数据的强大截断步骤来构造过度参数化最小二乘损耗功能。我们建议通过将无规则化的梯度下降应用于损耗函数来估计真实参数。当初始化接近原点并且步骤中足够小时,我们证明了所获得的解决方案在载体和矩阵案件中实现了最小的收敛统计速率。此外,我们的实验结果支持我们的理论调查结果,并表明我们的方法在$ \ ell_2 $ -staticatisticated率和变量选择一致性方面具有明确的正则化的经验卓越。
translated by 谷歌翻译
在本文中,我们提出{\ it \下划线{r} ecursive} {\ it \ usef \ undesline {i} mortance} {\ it \ it \ usew supsline {s} ketching} algorithM squares {\ it \下划线{o} ptimization}(risro)。 Risro的关键步骤是递归重要性草图,这是一个基于确定性设计的递归投影的新素描框架,它与文献中的随机素描\ Citep {Mahoney2011 randomized,Woodruff2014sketching}有很大不同。在这个新的素描框架下,可以重新解释文献中的几种现有算法,而Risro比它们具有明显的优势。 Risro易于实现,并在计算上有效,其中每次迭代中的核心过程是解决降低尺寸最小二乘问题的问题。我们在某些轻度条件下建立了Risro的局部二次线性和二次收敛速率。我们还发现了Risro与Riemannian Gauss-Newton算法在固定等级矩阵上的联系。在机器学习和统计数据中的两种应用中,RISRO的有效性得到了证明:低级别矩阵痕量回归和相位检索。仿真研究证明了Risro的出色数值性能。
translated by 谷歌翻译
异常值广泛发生在大数据应用中,可能严重影响统计估计和推理。在本文中,引入了抗强估计的框架,以强制任意给出的损耗函数。它与修剪方法密切连接,并且包括所有样本的显式外围参数,这反过来促进计算,理论和参数调整。为了解决非凸起和非体性的问题,我们开发可扩展的算法,以实现轻松和保证快速收敛。特别地,提出了一种新的技术来缓解对起始点的要求,使得在常规数据集上,可以大大减少数据重采样的数量。基于组合的统计和计算处理,我们能够超越M估计来执行非因思分析。所获得的抗性估算器虽然不一定全局甚至是局部最佳的,但在低维度和高维度中享有最小的速率最优性。回归,分类和神经网络的实验表明,在总异常值发生的情况下提出了拟议方法的优异性能。
translated by 谷歌翻译
随机奇异值分解(RSVD)是用于计算大型数据矩阵截断的SVD的一类计算算法。给定A $ n \ times n $对称矩阵$ \ mathbf {m} $,原型RSVD算法输出通过计算$ \ mathbf {m mathbf {m} $的$ k $引导singular vectors的近似m}^{g} \ mathbf {g} $;这里$ g \ geq 1 $是一个整数,$ \ mathbf {g} \ in \ mathbb {r}^{n \ times k} $是一个随机的高斯素描矩阵。在本文中,我们研究了一般的“信号加上噪声”框架下的RSVD的统计特性,即,观察到的矩阵$ \ hat {\ mathbf {m}} $被认为是某种真实但未知的加法扰动信号矩阵$ \ mathbf {m} $。我们首先得出$ \ ell_2 $(频谱规范)和$ \ ell_ {2 \ to \ infty} $(最大行行列$ \ ell_2 $ norm)$ \ hat {\ hat {\ Mathbf {M}} $和信号矩阵$ \ Mathbf {M} $的真实单数向量。这些上限取决于信噪比(SNR)和功率迭代$ g $的数量。观察到一个相变现象,其中较小的SNR需要较大的$ g $值以保证$ \ ell_2 $和$ \ ell_ {2 \ to \ fo \ infty} $ distances的收敛。我们还表明,每当噪声矩阵满足一定的痕量生长条件时,这些相变发生的$ g $的阈值都会很清晰。最后,我们得出了近似奇异向量的行波和近似矩阵的进入波动的正常近似。我们通过将RSVD的几乎最佳性能保证在应用于三个统计推断问题的情况下,即社区检测,矩阵完成和主要的组件分析,并使用缺失的数据来说明我们的理论结果。
translated by 谷歌翻译
Tensor完成是矩阵完成的自然高阶泛化,其中目标是从其条目的稀疏观察中恢复低级张量。现有算法在没有可证明的担保的情况下是启发式,基于解决运行不切实际的大型半纤维程序,或者需要强大的假设,例如需要因素几乎正交。在本文中,我们介绍了交替最小化的新变型,其又通过了解如何对矩阵设置中的交替最小化的收敛性的进展措施来调整到张量设置的启发。我们展示了强大的可证明的保证,包括表明我们的算法即使当因素高度相关时,我们的算法也会在真正的张量线上会聚,并且可以在几乎线性的时间内实现。此外,我们的算法也非常实用,我们表明我们可以完成具有千维尺寸的三阶张量,从观察其条目的微小一部分。相比之下,有些令人惊讶的是,我们表明,如果没有我们的新扭曲,则表明交替最小化的标准版本可以在实践中以急剧速度收敛。
translated by 谷歌翻译
现代高维方法经常采用“休稀稀物”的原则,而在监督多元学习统计学中可能面临着大量非零系数的“密集”问题。本文提出了一种新的聚类减少秩(CRL)框架,其施加了两个联合矩阵规范化,以自动分组构建预测因素的特征。 CRL比低级别建模更具可解释,并放松变量选择中的严格稀疏假设。在本文中,提出了新的信息 - 理论限制,揭示了寻求集群的内在成本,以及多元学习中的维度的祝福。此外,开发了一种有效的优化算法,其执行子空间学习和具有保证融合的聚类。所获得的定点估计器虽然不一定是全局最佳的,但在某些规则条件下享有超出标准似然设置的所需的统计准确性。此外,提出了一种新的信息标准,以及其无垢形式,用于集群和秩选择,并且具有严格的理论支持,而不假设无限的样本大小。广泛的模拟和实数据实验证明了所提出的方法的统计准确性和可解释性。
translated by 谷歌翻译
在稀疏线性建模 - 最佳子集选择中,研究了一个看似意外的,相对不太理解的基本工具的过度选择,这最小化了对非零系数的约束的限制的剩余平方和。虽然当信噪比(SNR)高时,最佳子集选择过程通常被视为稀疏学习中的“黄金标准”,但是当SNR低时,其预测性能会恶化。特别是,它通过连续收缩方法而言,例如脊回归和套索。我们研究了高噪声制度中最佳子集选择的行为,并提出了一种基于最小二乘标准的正则化版本的替代方法。我们提出的估算员(a)在很大程度上减轻了高噪声制度的最佳次集选择的可预测性能差。 (b)相对于通过脊回归和套索的最佳预测模型,通常递送大幅稀疏模型的同时表现出有利的。我们对所提出的方法的预测性质进行广泛的理论分析,并在噪声水平高时提供相对于最佳子集选择的优越预测性能的理由。我们的估算器可以表达为混合整数二阶圆锥优化问题的解决方案,因此,来自数学优化的现代计算工具可供使用。
translated by 谷歌翻译
我们研究了称为“乐观速率”(Panchenko 2002; Srebro等,2010)的统一收敛概念,用于与高斯数据的线性回归。我们的精致分析避免了现有结果中的隐藏常量和对数因子,这已知在高维设置中至关重要,特别是用于了解插值学习。作为一个特殊情况,我们的分析恢复了Koehler等人的保证。(2021年),在良性过度的过度条件下,严格地表征了低规范内插器的人口风险。但是,我们的乐观速度绑定还分析了具有任意训练错误的预测因子。这使我们能够在随机设计下恢复脊和套索回归的一些经典统计保障,并有助于我们在过度参数化制度中获得精确了解近端器的过度风险。
translated by 谷歌翻译
This paper is about a curious phenomenon. Suppose we have a data matrix, which is the superposition of a low-rank component and a sparse component. Can we recover each component individually? We prove that under some suitable assumptions, it is possible to recover both the low-rank and the sparse components exactly by solving a very convenient convex program called Principal Component Pursuit; among all feasible decompositions, simply minimize a weighted combination of the nuclear norm and of the 1 norm. This suggests the possibility of a principled approach to robust principal component analysis since our methodology and results assert that one can recover the principal components of a data matrix even though a positive fraction of its entries are arbitrarily corrupted. This extends to the situation where a fraction of the entries are missing as well. We discuss an algorithm for solving this optimization problem, and present applications in the area of video surveillance, where our methodology allows for the detection of objects in a cluttered background, and in the area of face recognition, where it offers a principled way of removing shadows and specularities in images of faces.
translated by 谷歌翻译
现代统计应用常常涉及最小化可能是非流动和/或非凸起的目标函数。本文侧重于广泛的Bregman-替代算法框架,包括本地线性近似,镜像下降,迭代阈值,DC编程以及许多其他实例。通过广义BREGMAN功能的重新发出使我们能够构建合适的误差测量并在可能高维度下建立非凸起和非凸起和非球形目标的全球收敛速率。对于稀疏的学习问题,在一些规律性条件下,所获得的估算器作为代理人的固定点,尽管不一定是局部最小化者,但享受可明确的统计保障,并且可以证明迭代顺序在所需的情况下接近统计事实准确地快速。本文还研究了如何通过仔细控制步骤和放松参数来设计基于适应性的动力的加速度而不假设凸性或平滑度。
translated by 谷歌翻译
本文为信号去噪提供了一般交叉验证框架。然后将一般框架应用于非参数回归方法,例如趋势过滤和二元推车。然后显示所得到的交叉验证版本以获得最佳调谐的类似物所熟知的几乎相同的收敛速度。没有任何先前的趋势过滤或二元推车的理论分析。为了说明框架的一般性,我们还提出并研究了两个基本估算器的交叉验证版本;套索用于高维线性回归和矩阵估计的奇异值阈值阈值。我们的一般框架是由Chatterjee和Jafarov(2015)的想法的启发,并且可能适用于使用调整参数的广泛估算方法。
translated by 谷歌翻译
在本文中,我们提出了一种均匀抖动的一位量化方案,以进行高维统计估计。该方案包含截断,抖动和量化,作为典型步骤。作为规范示例,量化方案应用于三个估计问题:稀疏协方差矩阵估计,稀疏线性回归和矩阵完成。我们研究了高斯和重尾政权,假定重尾数据的基本分布具有有限的第二或第四刻。对于每个模型,我们根据一位量化的数据提出新的估计器。在高斯次级政权中,我们的估计器达到了对数因素的最佳最小速率,这表明我们的量化方案几乎没有额外的成本。在重尾状态下,虽然我们的估计量基本上变慢,但这些结果是在这种单位量化和重型尾部设置中的第一个结果,或者比现有可比结果表现出显着改善。此外,我们为一位压缩传感和一位矩阵完成的问题做出了巨大贡献。具体而言,我们通过凸面编程将一位压缩感传感扩展到次高斯甚至是重尾传感向量。对于一位矩阵完成,我们的方法与标准似然方法基本不同,并且可以处理具有未知分布的预量化随机噪声。提出了有关合成数据的实验结果,以支持我们的理论分析。
translated by 谷歌翻译
套索是一种高维回归的方法,当时,当协变量$ p $的订单数量或大于观测值$ n $时,通常使用它。由于两个基本原因,经典的渐近态性理论不适用于该模型:$(1)$正规风险是非平滑的; $(2)$估算器$ \ wideHat {\ boldsymbol {\ theta}} $与true参数vector $ \ boldsymbol {\ theta}^*$无法忽略。结果,标准的扰动论点是渐近正态性的传统基础。另一方面,套索估计器可以精确地以$ n $和$ p $大,$ n/p $的订单为一。这种表征首先是在使用I.I.D的高斯设计的情况下获得的。协变量:在这里,我们将其推广到具有非偏差协方差结构的高斯相关设计。这是根据更简单的``固定设计''模型表示的。我们在两个模型中各种数量的分布之间的距离上建立了非反应界限,它们在合适的稀疏类别中均匀地固定在信号上$ \ boldsymbol {\ theta}^*$。作为应用程序,我们研究了借助拉索的分布,并表明需要校正程度对于计算有效的置信区间是必要的。
translated by 谷歌翻译
我们开发机器以设计有效的可计算和一致的估计,随着观察人数而达到零的估计误差,因为观察的次数增长,当面对可能损坏的答复,除了样本的所有品,除了每种量之外的ALL。作为具体示例,我们调查了两个问题:稀疏回归和主成分分析(PCA)。对于稀疏回归,我们实现了最佳样本大小的一致性$ n \ gtrsim(k \ log d)/ \ alpha ^ $和最佳错误率$ o(\ sqrt {(k \ log d)/(n \ cdot \ alpha ^ 2))$ N $是观察人数,$ D $是尺寸的数量,$ k $是参数矢量的稀疏性,允许在数量的数量中为逆多项式进行逆多项式样品。在此工作之前,已知估计是一致的,当Inliers $ \ Alpha $ IS $ O(1 / \ log \ log n)$,即使是(非球面)高斯设计矩阵时也是一致的。结果在弱设计假设下持有,并且在这种一般噪声存在下仅被D'Orsi等人最近以密集的设置(即一般线性回归)显示。 [DNS21]。在PCA的上下文中,我们在参数矩阵上的广泛尖端假设下获得最佳错误保证(通常用于矩阵完成)。以前的作品可以仅在假设下获得非琐碎的保证,即与最基于的测量噪声以$ n $(例如,具有方差1 / n ^ 2 $的高斯高斯)。为了设计我们的估算,我们用非平滑的普通方(如$ \ ell_1 $ norm或核规范)装备Huber丢失,并以一种新的方法来分析损失的新方法[DNS21]的方法[DNS21]。功能。我们的机器似乎很容易适用于各种估计问题。
translated by 谷歌翻译
网络数据通常在各种应用程序中收集,代表感兴趣的功能之间直接测量或统计上推断的连接。在越来越多的域中,这些网络会随着时间的流逝而收集,例如不同日子或多个主题之间的社交媒体平台用户之间的交互,例如在大脑连接性的多主体研究中。在分析多个大型网络时,降低降低技术通常用于将网络嵌入更易于处理的低维空间中。为此,我们通过专门的张量分解来开发用于网络集合的主组件分析(PCA)的框架,我们将半对称性张量PCA或SS-TPCA术语。我们得出计算有效的算法来计算我们提出的SS-TPCA分解,并在标准的低级别信号加噪声模型下建立方法的统计效率。值得注意的是,我们表明SS-TPCA具有与经典矩阵PCA相同的估计精度,并且与网络中顶点数的平方根成正比,而不是预期的边缘数。我们的框架继承了古典PCA的许多优势,适用于广泛的无监督学习任务,包括识别主要网络,隔离有意义的更改点或外出观察,以及表征最不同边缘的“可变性网络”。最后,我们证明了我们的提案对模拟数据的有效性以及经验法律研究的示例。用于建立我们主要一致性结果的技术令人惊讶地简单明了,可能会在其他各种网络分析问题中找到使用。
translated by 谷歌翻译