我们提出了一种估计具有标称分类数据的高维线性模型的方法。我们的估算器,称为范围,通过使其相应的系数完全相等来融合水平。这是通过对分类变量的系数的阶数统计之间的差异之间的差异来实现这一点,从而聚类系数。我们提供了一种算法,用于精确和有效地计算在具有潜在许多级别的单个变量的情况下的总体上的最小值的全局最小值,并且在多变量情况下在块坐标血管下降过程中使用它。我们表明,利用未知级别融合的Oracle最小二乘解决方案是具有高概率的坐标血缘的极限点,只要真正的级别具有一定的最小分离;已知这些条件在单变量案例中最小。我们展示了在一系列实际和模拟数据集中的范围的有利性能。 R包的R包Catreg实现线性模型的范围,也可以在CRAN上提供逻辑回归的版本。
translated by 谷歌翻译
Testing the significance of a variable or group of variables $X$ for predicting a response $Y$, given additional covariates $Z$, is a ubiquitous task in statistics. A simple but common approach is to specify a linear model, and then test whether the regression coefficient for $X$ is non-zero. However, when the model is misspecified, the test may have poor power, for example when $X$ is involved in complex interactions, or lead to many false rejections. In this work we study the problem of testing the model-free null of conditional mean independence, i.e. that the conditional mean of $Y$ given $X$ and $Z$ does not depend on $X$. We propose a simple and general framework that can leverage flexible nonparametric or machine learning methods, such as additive models or random forests, to yield both robust error control and high power. The procedure involves using these methods to perform regressions, first to estimate a form of projection of $Y$ on $X$ and $Z$ using one half of the data, and then to estimate the expected conditional covariance between this projection and $Y$ on the remaining half of the data. While the approach is general, we show that a version of our procedure using spline regression achieves what we show is the minimax optimal rate in this nonparametric testing problem. Numerical experiments demonstrate the effectiveness of our approach both in terms of maintaining Type I error control, and power, compared to several existing approaches.
translated by 谷歌翻译
High-dimensional data can often display heterogeneity due to heteroscedastic variance or inhomogeneous covariate effects. Penalized quantile and expectile regression methods offer useful tools to detect heteroscedasticity in high-dimensional data. The former is computationally challenging due to the non-smooth nature of the check loss, and the latter is sensitive to heavy-tailed error distributions. In this paper, we propose and study (penalized) robust expectile regression (retire), with a focus on iteratively reweighted $\ell_1$-penalization which reduces the estimation bias from $\ell_1$-penalization and leads to oracle properties. Theoretically, we establish the statistical properties of the retire estimator under two regimes: (i) low-dimensional regime in which $d \ll n$; (ii) high-dimensional regime in which $s\ll n\ll d$ with $s$ denoting the number of significant predictors. In the high-dimensional setting, we carefully characterize the solution path of the iteratively reweighted $\ell_1$-penalized retire estimation, adapted from the local linear approximation algorithm for folded-concave regularization. Under a mild minimum signal strength condition, we show that after as many as $\log(\log d)$ iterations the final iterate enjoys the oracle convergence rate. At each iteration, the weighted $\ell_1$-penalized convex program can be efficiently solved by a semismooth Newton coordinate descent algorithm. Numerical studies demonstrate the competitive performance of the proposed procedure compared with either non-robust or quantile regression based alternatives.
translated by 谷歌翻译
将回归系数融合到均匀组中可以揭示在每个组内共享共同值的系数。这种扩展均匀性降低了参数空间的内在尺寸,并释放统计学精度。我们提出并调查了一个名为$ l_0 $ -fusion的新的组合分组方法,这些方法可用于混合整数优化(MIO)。在统计方面,我们识别称为分组灵敏度的基本量,该基本量为恢复真实组的难度。我们展示$ l_0 $ -fusion在分组灵敏度的最弱需求下实现了分组一致性:如果违反了这一要求,则小组拼写的最低风险将无法收敛到零。此外,我们展示了在高维制度中,可以使用无需任何必要的统计效率损失的确保筛选特征,同时降低计算成本的校正特征耦合耦合的$ L_0 $ -Fusion。在算法方面,我们为$ l_0 $ -fusion提供了一个mio配方,以及温暖的开始策略。仿真和实际数据分析表明,在分组准确性方面,$ L_0 $ -FUSUS展示其竞争对手的优势。
translated by 谷歌翻译
本文为信号去噪提供了一般交叉验证框架。然后将一般框架应用于非参数回归方法,例如趋势过滤和二元推车。然后显示所得到的交叉验证版本以获得最佳调谐的类似物所熟知的几乎相同的收敛速度。没有任何先前的趋势过滤或二元推车的理论分析。为了说明框架的一般性,我们还提出并研究了两个基本估算器的交叉验证版本;套索用于高维线性回归和矩阵估计的奇异值阈值阈值。我们的一般框架是由Chatterjee和Jafarov(2015)的想法的启发,并且可能适用于使用调整参数的广泛估算方法。
translated by 谷歌翻译
Sparse modelling or model selection with categorical data is challenging even for a moderate number of variables, because one parameter is roughly needed to encode one category or level. The Group Lasso is a well known efficient algorithm for selection continuous or categorical variables, but all estimates related to a selected factor usually differ. Therefore, a fitted model may not be sparse, which makes the model interpretation difficult. To obtain a sparse solution of the Group Lasso we propose the following two-step procedure: first, we reduce data dimensionality using the Group Lasso; then to choose the final model we use an information criterion on a small family of models prepared by clustering levels of individual factors. We investigate selection correctness of the algorithm in a sparse high-dimensional scenario. We also test our method on synthetic as well as real datasets and show that it performs better than the state of the art algorithms with respect to the prediction accuracy or model dimension.
translated by 谷歌翻译
交叉验证是在许多非参数回归问题中调整参数选择的标准方法。然而,它在变化点回归中的使用不太常见,也许由于其预测误差的标准可能似乎允许小的虚假变化,因此不太适合估计变化点的数量和位置。我们表明,实际上,具有平方误差损失的交叉验证问题更严重,可以导致系统的减少或过度估计变化点的数量,以及在更改的简单设置中的平均功能的高度次优估计很容易检测到。我们提出了两种简单的方法来解决这些问题,第一个涉及使用绝对误差而不是平方误差损失,以及第二个涉及修改所用的熔断集。对于后者,我们提供了允许一致估计一般变更点估计程序的变化点数的条件。我们显示这些条件对于使用新结果的最佳分区满足其在提供错误数量的更改点时的性能。数值实验表明,特别是当错误分布良好的调整参数选择时,特别是使用经典调谐参数选择的绝对误差方法竞争,但可以在错过的模型中显着优于这些。 CRAN上的R包CrossValidationCP中提供了我们的方法。
translated by 谷歌翻译
套索是一种高维回归的方法,当时,当协变量$ p $的订单数量或大于观测值$ n $时,通常使用它。由于两个基本原因,经典的渐近态性理论不适用于该模型:$(1)$正规风险是非平滑的; $(2)$估算器$ \ wideHat {\ boldsymbol {\ theta}} $与true参数vector $ \ boldsymbol {\ theta}^*$无法忽略。结果,标准的扰动论点是渐近正态性的传统基础。另一方面,套索估计器可以精确地以$ n $和$ p $大,$ n/p $的订单为一。这种表征首先是在使用I.I.D的高斯设计的情况下获得的。协变量:在这里,我们将其推广到具有非偏差协方差结构的高斯相关设计。这是根据更简单的``固定设计''模型表示的。我们在两个模型中各种数量的分布之间的距离上建立了非反应界限,它们在合适的稀疏类别中均匀地固定在信号上$ \ boldsymbol {\ theta}^*$。作为应用程序,我们研究了借助拉索的分布,并表明需要校正程度对于计算有效的置信区间是必要的。
translated by 谷歌翻译
在稀疏线性建模 - 最佳子集选择中,研究了一个看似意外的,相对不太理解的基本工具的过度选择,这最小化了对非零系数的约束的限制的剩余平方和。虽然当信噪比(SNR)高时,最佳子集选择过程通常被视为稀疏学习中的“黄金标准”,但是当SNR低时,其预测性能会恶化。特别是,它通过连续收缩方法而言,例如脊回归和套索。我们研究了高噪声制度中最佳子集选择的行为,并提出了一种基于最小二乘标准的正则化版本的替代方法。我们提出的估算员(a)在很大程度上减轻了高噪声制度的最佳次集选择的可预测性能差。 (b)相对于通过脊回归和套索的最佳预测模型,通常递送大幅稀疏模型的同时表现出有利的。我们对所提出的方法的预测性质进行广泛的理论分析,并在噪声水平高时提供相对于最佳子集选择的优越预测性能的理由。我们的估算器可以表达为混合整数二阶圆锥优化问题的解决方案,因此,来自数学优化的现代计算工具可供使用。
translated by 谷歌翻译
我们引入了一种新的经验贝叶斯方法,用于大规模多线性回归。我们的方法结合了两个关键思想:(i)使用灵活的“自适应收缩”先验,该先验近似于正常分布的有限混合物,近似于正常分布的非参数家族; (ii)使用变分近似来有效估计先前的超参数并计算近似后期。将这两个想法结合起来,将快速,灵活的方法与计算速度相当,可与快速惩罚的回归方法(例如Lasso)相当,并在各种场景中具有出色的预测准确性。此外,我们表明,我们方法中的后验平均值可以解释为解决惩罚性回归问题,并通过直接解决优化问题(而不是通过交叉验证来调整)从数据中学到的惩罚函数的精确形式。 。我们的方法是在r https://github.com/stephenslab/mr.ash.ash.alpha的r软件包中实现的
translated by 谷歌翻译
现代高维方法经常采用“休稀稀物”的原则,而在监督多元学习统计学中可能面临着大量非零系数的“密集”问题。本文提出了一种新的聚类减少秩(CRL)框架,其施加了两个联合矩阵规范化,以自动分组构建预测因素的特征。 CRL比低级别建模更具可解释,并放松变量选择中的严格稀疏假设。在本文中,提出了新的信息 - 理论限制,揭示了寻求集群的内在成本,以及多元学习中的维度的祝福。此外,开发了一种有效的优化算法,其执行子空间学习和具有保证融合的聚类。所获得的定点估计器虽然不一定是全局最佳的,但在某些规则条件下享有超出标准似然设置的所需的统计准确性。此外,提出了一种新的信息标准,以及其无垢形式,用于集群和秩选择,并且具有严格的理论支持,而不假设无限的样本大小。广泛的模拟和实数据实验证明了所提出的方法的统计准确性和可解释性。
translated by 谷歌翻译
由于在数据稀缺的设置中,交叉验证的性能不佳,我们提出了一个新颖的估计器,以估计数据驱动的优化策略的样本外部性能。我们的方法利用优化问题的灵敏度分析来估计梯度关于数据中噪声量的最佳客观值,并利用估计的梯度将策略的样本中的表现为依据。与交叉验证技术不同,我们的方法避免了为测试集牺牲数据,在训练和因此非常适合数据稀缺的设置时使用所有数据。我们证明了我们估计量的偏见和方差范围,这些问题与不确定的线性目标优化问题,但已知的,可能是非凸的,可行的区域。对于更专业的优化问题,从某种意义上说,可行区域“弱耦合”,我们证明结果更强。具体而言,我们在估算器的错误上提供明确的高概率界限,该估计器在策略类别上均匀地保持,并取决于问题的维度和策略类的复杂性。我们的边界表明,在轻度条件下,随着优化问题的尺寸的增长,我们的估计器的误差也会消失,即使可用数据的量仍然很小且恒定。说不同的是,我们证明我们的估计量在小型数据中的大规模政权中表现良好。最后,我们通过数值将我们提出的方法与最先进的方法进行比较,通过使用真实数据调度紧急医疗响应服务的案例研究。我们的方法提供了更准确的样本外部性能估计,并学习了表现更好的政策。
translated by 谷歌翻译
稳定性选择(Meinshausen和Buhlmann,2010)通过返回许多副页面一致选择的功能来使任何特征选择方法更稳定。我们证明(在我们的知识中,它的知识,它的第一个结果),对于包含重要潜在变量的高度相关代理的数据,套索通常选择一个代理,但与套索的稳定性选择不能选择任何代理,导致比单独的套索更糟糕的预测性能。我们介绍集群稳定性选择,这利用了从业者的知识,即数据中存在高度相关的集群,从而产生比此设置中的稳定性选择更好的特征排名。我们考虑了几种特征组合方法,包括在每个重要集群中占据各个重要集群中的特征的加权平均值,其中重量由选择集群成员的频率决定,我们显示的是比以前的提案更好地导致更好的预测模型。我们呈现来自Meinshausen和Buhlmann(2010)和Shah和Samworth(2012)的理论担保的概括,以表明集群稳定选择保留相同的保证。总之,集群稳定性选择享有两个世界的最佳选择,产生既稳定的稀疏选择集,具有良好的预测性能。
translated by 谷歌翻译
组选择的最佳子集(BSG)是选择一小部分非重叠组以在响应变量上获得最佳解释性的过程。它吸引了越来越多的关注,并且在实践中具有深远的应用。但是,由于BSG在高维环境中的计算棘手性,开发用于解决BSGS的有效算法仍然是研究热点。在本文中,我们提出了一种划分的算法,该算法迭代地检测相关组并排除了无关的组。此外,再加上新的组信息标准,我们开发了一种自适应算法来确定最佳模型大小。在轻度条件下,我们的算法可以在多项式时间内以高概率确定组的最佳子集是可以证明的。最后,我们通过将它们与合成数据集和现实世界中的几种最新算法进行比较来证明我们的方法的效率和准确性。
translated by 谷歌翻译
We develop a general framework for distribution-free predictive inference in regression, using conformal inference. The proposed methodology allows for the construction of a prediction band for the response variable using any estimator of the regression function. The resulting prediction band preserves the consistency properties of the original estimator under standard assumptions, while guaranteeing finite-sample marginal coverage even when these assumptions do not hold. We analyze and compare, both empirically and theoretically, the two major variants of our conformal framework: full conformal inference and split conformal inference, along with a related jackknife method. These methods offer different tradeoffs between statistical accuracy (length of resulting prediction intervals) and computational efficiency. As extensions, we develop a method for constructing valid in-sample prediction intervals called rank-one-out conformal inference, which has essentially the same computational efficiency as split conformal inference. We also describe an extension of our procedures for producing prediction bands with locally varying length, in order to adapt to heteroskedascity in the data. Finally, we propose a model-free notion of variable importance, called leave-one-covariate-out or LOCO inference. Accompanying this paper is an R package conformalInference that implements all of the proposals we have introduced. In the spirit of reproducibility, all of our empirical results can also be easily (re)generated using this package.
translated by 谷歌翻译
从多任务学习到稀疏的加性建模到分层选择,尊重群体结构的稀疏回归和分类估计器将其应用于各种统计和机器学习问题。这项工作引入了结构化稀疏估计器,将小组子集选择与收缩结合在一起。为了适应复杂的结构,我们的估计器允许组之间任意重叠。我们开发了一个优化框架,用于拟合非凸正则化表面并呈现有限样本误差界,以估计回归函数。作为一个需要结构的应用程序,我们研究了稀疏的半参数建模,该过程允许每个预测器的效果为零,线性或非线性。对于此任务,与替代方案相比,新的估计器对合成数据的几个指标有所改善。最后,我们证明了它们在使用许多预测因素的超市人流交通和经济衰退中建模的功效。这些演示表明,使用新估计量拟合的稀疏半参数模型是完全线性和完全非参数替代方案之间的出色折衷。我们所有的算法都可以在可扩展的实现GRPSEL中提供。
translated by 谷歌翻译
从操作的角度来看,对调查响应率的准确预测至关重要。美国人口普查局的著名漫游应用程序使用了在美国人口普查计划数据库数据中培训的原则统计模型来识别难以调查的领域。较早的众包竞赛表明,一组回归树木在预测调查率方面取得了最佳性能。但是,由于有限的解释性,无法针对预期应用程序采用相应的模型。在本文中,我们提出了新的可解释的统计方法,以高精度地预测调查中的响应率。我们研究通过$ \ ell_0 $ regularization以及提供层次结构化的变体的稀疏非参数添加剂模型,可提供增强的解释性。尽管有强大的方法论基础,这种模型在计算上可能具有挑战性 - 我们提出了学习这些模型的新可扩展算法。我们还为所提出的估计量建立了新的非反应误差界。基于美国人口普查计划数据库的实验表明,我们的方法导致高质量的预测模型,可为不同人群的不同部分可行。有趣的是,我们的方法在基于梯度增强和前馈神经网络的最先进的黑盒机器学习方法中提供了可解释性的显着提高,而不会失去预测性能。我们在Python中实现的代码实现可在https://github.com/shibalibrahim/addived-models-with-sonstructred-interactions上获得。
translated by 谷歌翻译
我们提出了一种基于优化的基于优化的框架,用于计算差异私有M估算器以及构建差分私立置信区的新方法。首先,我们表明稳健的统计数据可以与嘈杂的梯度下降或嘈杂的牛顿方法结合使用,以便分别获得具有全局线性或二次收敛的最佳私人估算。我们在局部强大的凸起和自我协调下建立当地和全球融合保障,表明我们的私人估算变为对非私人M估计的几乎最佳附近的高概率。其次,我们通过构建我们私有M估计的渐近方差的差异私有估算来解决参数化推断的问题。这自然导致近​​似枢轴统计,用于构建置信区并进行假设检测。我们展示了偏置校正的有效性,以提高模拟中的小样本实证性能。我们说明了我们在若干数值例子中的方法的好处。
translated by 谷歌翻译
Many scientific problems require identifying a small set of covariates that are associated with a target response and estimating their effects. Often, these effects are nonlinear and include interactions, so linear and additive methods can lead to poor estimation and variable selection. Unfortunately, methods that simultaneously express sparsity, nonlinearity, and interactions are computationally intractable -- with runtime at least quadratic in the number of covariates, and often worse. In the present work, we solve this computational bottleneck. We show that suitable interaction models have a kernel representation, namely there exists a "kernel trick" to perform variable selection and estimation in $O$(# covariates) time. Our resulting fit corresponds to a sparse orthogonal decomposition of the regression function in a Hilbert space (i.e., a functional ANOVA decomposition), where interaction effects represent all variation that cannot be explained by lower-order effects. On a variety of synthetic and real data sets, our approach outperforms existing methods used for large, high-dimensional data sets while remaining competitive (or being orders of magnitude faster) in runtime.
translated by 谷歌翻译
考虑一个面板数据设置,其中可获得对个人的重复观察。通常可以合理地假设存在共享观察特征的类似效果的个体组,但是分组通常提前未知。我们提出了一种新颖的方法来估计普通面板数据模型的这种未观察到的分组。我们的方法明确地估计各个参数估计中的不确定性,并且在每个人上具有大量的个体和/或重复测量的计算可行。即使在单个数据不可用的情况下,也可以应用开发的想法,并且仅向研究人员提供参数估计与某种量化的不确定性。
translated by 谷歌翻译