深层生成模型已成为检测数据中任意异常的有前途的工具,并分配了手动标记的必要性。最近,自回旋变压器在医学成像中取得了最先进的性能。但是,这些模型仍然具有一些内在的弱点,例如需要将图像建模为1D序列,在采样过程中误差的积累以及与变压器相关的显着推理时间。去核扩散概率模型是一类非自动回旋生成模型,最近显示出可以在计算机视觉中产生出色的样品(超过生成的对抗网络),并实现与变压器具有竞争力同时具有快速推理时间的对数可能性。扩散模型可以应用于自动编码器学到的潜在表示,使其易于扩展,并适用于高维数据(例如医学图像)的出色候选者。在这里,我们提出了一种基于扩散模型的方法,以检测和分段脑成像中的异常。通过在健康数据上训练模型,然后探索其在马尔可夫链上的扩散和反向步骤,我们可以识别潜在空间中的异常区域,因此可以确定像素空间中的异常情况。我们的扩散模型与一系列具有2D CT和MRI数据的实验相比,具有竞争性能,涉及合成和实际病理病变,推理时间大大减少,从而使它们的用法在临床上可行。
translated by 谷歌翻译
人脑解剖图像的专家解释是神经放射学的中心部分。已经提出了几种基于机器学习的技术来协助分析过程。但是,通常需要对ML模型进行培训以执行特定的任务,例如脑肿瘤分割或分类。相应的培训数据不仅需要费力的手动注释,而且人脑MRI中可以存在多种异常 - 甚至同时发生,这使得所有可能的异常情况都非常具有挑战性。因此,可能的解决方案是一种无监督的异常检测(UAD)系统,可以从健康受试者的未标记数据集中学习数据分布,然后应用以检测​​分布样本。然后,这种技术可用于检测异常 - 病变或异常,例如脑肿瘤,而无需明确训练该特定病理的模型。过去已经为此任务提出了几种基于变异的自动编码器(VAE)技术。即使它们在人为模拟的异常情况下表现良好,但其中许多在检测临床数据中的异常情况下表现较差。这项研究提出了“上下文编码” VAE(CEVAE)模型的紧凑版本,并结合了预处理和后处理步骤,创建了UAD管道(Strega)(Strega),该步骤对临床数据更强大,并显示其在检测到其检测方面的适用性脑MRI中的肿瘤等异常。 The proposed pipeline achieved a Dice score of 0.642$\pm$0.101 while detecting tumours in T2w images of the BraTS dataset and 0.859$\pm$0.112 while detecting artificially induced anomalies, while the best performing baseline achieved 0.522$\pm$0.135 and 0.783$\ PM分别为0.111美元。
translated by 谷歌翻译
DeNoising扩散模型代表了计算机视觉中最新的主题,在生成建模领域表现出了显着的结果。扩散模型是一个基于两个阶段的深层生成模型,一个正向扩散阶段和反向扩散阶段。在正向扩散阶段,通过添加高斯噪声,输入数据在几个步骤中逐渐受到干扰。在反向阶段,模型的任务是通过学习逐步逆转扩散过程来恢复原始输入数据。尽管已知的计算负担,即由于采样过程中涉及的步骤数量,扩散模型对生成样品的质量和多样性得到了广泛赞赏。在这项调查中,我们对视觉中应用的denoising扩散模型的文章进行了全面综述,包括该领域的理论和实际贡献。首先,我们识别并介绍了三个通用扩散建模框架,这些框架基于扩散概率模型,噪声调节得分网络和随机微分方程。我们进一步讨论了扩散模型与其他深层生成模型之间的关系,包括变异自动编码器,生成对抗网络,基于能量的模型,自回归模型和正常流量。然后,我们介绍了计算机视觉中应用的扩散模型的多角度分类。最后,我们说明了扩散模型的当前局限性,并设想了一些有趣的未来研究方向。
translated by 谷歌翻译
由于成本限制,减少医学图像分割中密集注释的面具的需求很重要。在本文中,我们考虑仅通过使用图像级标签进行训练来推断脑病变的像素级预测的问题。通过利用生成扩散概率模型(DPM)的最新进展,我们综合了“如果不存在X病理学,患者将如何出现?”。观察到的患者状态与健康反事实之间的差异图像可用于推断病理位置。我们产生的反事实是对应于输入的最小变化,以使其转化为健康域。这需要在DPM中使用健康和不健康的数据进行培训。我们通过通过隐式指导以及注意力条件而不是使用分类器来操纵生成过程来改善以前的反事实DPM。代码可在https://github.com/vios-s/diff-scm上找到。
translated by 谷歌翻译
与诊断放射学相关的患者护理质量与医师工作量成正比。分割是诊断和治疗程序的基本限制前体。机器学习的进步(ML)旨在提高诊断效率,以用广义算法替代单个应用程序。在无监督的异常检测(UAD)中,基于卷积神经网络(CNN)自动编码器(AES)和变异自动编码器(VAE)被视为基于重建的异常分段的事实方法。在医学图像中寻找异常区域是使用异常分割的主要应用之一。 CNN中受限制的接收场限制了CNN对全局上下文进行建模,因此,如果异常区域涵盖了图像的一部分,则基于CNN的AES无法带来对图像的语义理解。另一方面,视觉变压器(VIT)已成为CNN的竞争替代品。它依赖于能够将图像斑块相互关联的自我发挥机制。为了重建一个连贯和更现实的图像,在这项工作中,我们研究了变形金刚在为基于重建的UAD任务构建AES的功能中。我们专注于用于大脑磁共振成像(MRI)的异常分割,并呈现五个基于变压器的模型,同时可以使分割性能可比或与最新模型(SOTA)模型相当。源代码可在github https://github.com/ahmedgh970/transformers_unsupervise_anomaly_segentation.git上获得
translated by 谷歌翻译
作为生成部件作为自回归模型的向量量化变形式自动化器(VQ-VAE)的集成在图像生成上产生了高质量的结果。但是,自回归模型将严格遵循采样阶段的逐步扫描顺序。这导致现有的VQ系列模型几乎不会逃避缺乏全球信息的陷阱。连续域中的去噪扩散概率模型(DDPM)显示了捕获全局背景的能力,同时产生高质量图像。在离散状态空间中,一些作品已经证明了执行文本生成和低分辨率图像生成的可能性。我们认为,在VQ-VAE的富含内容的离散视觉码本的帮助下,离散扩散模型还可以利用全局上下文产生高保真图像,这补偿了沿像素空间的经典自回归模型的缺陷。同时,离散VAE与扩散模型的集成解决了传统的自回归模型的缺点是超大的,以及在生成图像时需要在采样过程中的过度时间的扩散模型。结果发现所生成的图像的质量严重依赖于离散的视觉码本。广泛的实验表明,所提出的矢量量化离散扩散模型(VQ-DDM)能够实现与低复杂性的顶层方法的相当性能。它还展示了在没有额外培训的图像修复任务方面与自回归模型量化的其他矢量突出的优势。
translated by 谷歌翻译
当前的无监督异常定位方法依赖于生成模型来学习正常图像的分布,后来用于识别从重建图像上的错误中得出的潜在异常区域。但是,几乎所有先前的文献的主要局限性是需要使用异常图像来设置特定于类的阈值以定位异常。这限制了它们在现实的情况下的可用性,其中通常只能访问正常数据。尽管存在这一主要缺点,但只有少量作品通过在培训期间将监督整合到注意地图上,从而解决了这一限制。在这项工作中,我们提出了一种新颖的公式,不需要访问异常的图像来定义阈值。此外,与最近的工作相反,提出的约束是以更有原则的方式制定的,在约束优化方面利用了知名的知识。特别是,对先前工作中注意图的平等约束被不平等约束所取代,这允许更具灵活性。此外,为了解决基于惩罚的功能的局限性,我们采用了流行的对数栏方法的扩展来处理约束。最后,我们提出了一个替代正规化项,该项最大化了注意图的香农熵,从而减少了所提出模型的超参数量。关于脑病变细分的两个公开数据集的全面实验表明,所提出的方法基本上优于相关文献,为无监督病变细分建立了新的最新结果,而无需访问异常图像。
translated by 谷歌翻译
目前无监督的异常本地化方法依赖于生成模型来学习正常图像的分布,后来用于识别从重建图像上的误差导出的潜在的异常区域。然而,几乎所有先前文献的主要限制是需要采用异常图像来设置特定类阈值以定位异常。这限制了它们在现实方案中的可用性,通常可以访问正常数据。尽管存在这一重大缺点,但只有少数工程才能通过整合在培训期间对关注地图的监督来解决了这一限制。在这项工作中,我们提出了一种新的制定,不需要访问异常来定义阈值的图像。此外,与最近的工作相反,所提出的约束以更具原则的方式配制,利用了在约束优化中的知名知识。特别是,在现有工作中的注意图上的平等限制由不等式约束取代,这允许更灵活性。此外,为了解决基于惩罚的函数的限制,我们使用流行的日志屏障方法的扩展来处理约束。对流行的Brats'19数据集的综合实验表明,该方法的方法显着优于相关文献,为无监督的病变细分建立了新的最先进结果。
translated by 谷歌翻译
我们介绍了文本到图像生成的矢量量化扩散(VQ-扩散)模型。该方法基于矢量量化变分性AutoEncoder(VQ-VAE),其潜像通过最近开发的去噪扩散概率(DDPM)的条件变体为基础。我们发现这种潜在空间方法非常适合于图像到图像生成任务,因为它不仅消除了具有现有方法的单向偏差,还允许我们结合掩模和更换的扩散策略,以避免积累错误,这是现有方法的严重问题。我们的实验表明,与具有类似数量的参数数量的传统自回归(AR)模型相比,VQ扩散产生明显更好的文本到图像生成结果。与以前的基于GAN的文本到图像方法相比,我们的VQ扩散可以通过大边缘处理更复杂的场景并提高合成的图像质量。最后,我们表明我们的方法中的图像生成计算可以通过Reparameter化进行高效。利用传统的AR方法,文本到图像生成时间随输出图像分辨率线性增加,因此即使对于正常尺寸图像也是相当耗时的。 VQ-扩散使我们能够在质量和速度之间实现更好的权衡。我们的实验表明,具有Reparameterization的VQ扩散模型比传统的AR方法快15倍,同时实现更好的图像质量。
translated by 谷歌翻译
虽然扩散概率模型可以产生高质量的图像内容,但仍然存在高分辨率图像的关键限制及其相关的高计算要求。最近的矢量量化图像模型已经克服了图像分辨率的这种限制,而是通过从之前的元素 - 明智的自回归采样生成令牌时,这是对图像分辨率的速度和单向的。相比之下,在本文中,我们提出了一种新的离散扩散概率模型,其通过使用无约束的变压器架构作为骨干来支持矢量量化令牌的并行预测。在培训期间,令牌以订单不可知的方式随机掩盖,变压器学会预测原始令牌。这种矢量量化令牌预测的并行性反过来促进了在计算费用的一小部分下的全球一致的高分辨率和多样性图像的无条件生成。以这种方式,我们可以产生超过原始训练集样本的图像分辨率,而另外提供每个图像似然估计(从生成的对抗方法的差点)。我们的方法在密度方面实现了最先进的结果(Lsun卧室:1.51; Lsun Churches:1.12; FFHQ:1.20)和覆盖范围(Lsun卧室:0.83; Lsun Churches:0.73; FFHQ:0.80),并执行竞争对手(LSUN卧室:3.64; LSUN教堂:4.07; FFHQ:6.11)在计算和减少训练套件要求方面提供优势。
translated by 谷歌翻译
矢量量化变量自动编码器(VQ-VAE)是基于数据的离散潜在表示的生成模型,其中输入映射到有限的学习嵌入式集合。要生成新样品,必须对离散状态进行自动介绍的先验分布。分别地。这一先验通常非常复杂,并导致生成缓慢。在这项工作中,我们提出了一个新模型,以同时训练先验和编码器/解码器网络。我们在连续编码的向量和非信息性先验分布之间建立扩散桥。然后将潜在离散状态作为这些连续向量的随机函数。我们表明,我们的模型与迷你imagenet和Cifar数据集的自动回归先验具有竞争力,并且在优化和采样方面都有效。我们的框架还扩展了标准VQ-VAE,并可以启用端到端培训。
translated by 谷歌翻译
深度神经网络在医学图像分析中带来了显着突破。但是,由于其渴望数据的性质,医学成像项目中适度的数据集大小可能会阻碍其全部潜力。生成合成数据提供了一种有希望的替代方案,可以补充培训数据集并进行更大范围的医学图像研究。最近,扩散模型通过产生逼真的合成图像引起了计算机视觉社区的注意。在这项研究中,我们使用潜在扩散模型探索从高分辨率3D脑图像中生成合成图像。我们使用来自英国生物银行数据集的T1W MRI图像(n = 31,740)来训练我们的模型,以了解脑图像的概率分布,该脑图像以协变量为基础,例如年龄,性别和大脑结构量。我们发现我们的模型创建了现实的数据,并且可以使用条件变量有效地控制数据生成。除此之外,我们创建了一个带有100,000次脑图像的合成数据集,并使科学界公开使用。
translated by 谷歌翻译
扩散模型是一类深入生成模型,在具有密集理论建立的各种任务上显示出令人印象深刻的结果。尽管与其他最先进的模型相比,扩散模型的样本合成质量和多样性令人印象深刻,但它们仍然遭受了昂贵的抽样程序和次优可能的估计。最近的研究表明,对提高扩散模型的性能的热情非常热情。在本文中,我们对扩散模型的现有变体进行了首次全面综述。具体而言,我们提供了扩散模型的第一个分类法,并将它们分类为三种类型,即采样加速增强,可能性最大化的增强和数据将来增强。我们还详细介绍了其他五个生成模型(即变异自动编码器,生成对抗网络,正常流量,自动回归模型和基于能量的模型),并阐明扩散模型与这些生成模型之间的连接。然后,我们对扩散模型的应用进行彻底研究,包括计算机视觉,自然语言处理,波形信号处理,多模式建模,分子图生成,时间序列建模和对抗性纯化。此外,我们提出了与这种生成模型的发展有关的新观点。
translated by 谷歌翻译
我们提出了一种用于测试使用吸收材料记录辐射电磁(EM)场的天线阵列的新方法,并使用条件编码器解码器模型通过AI评估所得到的热图像串。鉴于馈送到每个阵列元件的信号的功率和相位,我们能够通过我们训练的模型重建正常序列,并将其与热相机观察到的真实序列进行比较。这些热图仅包含低级模式,例如各种形状的斑点。然后,基于轮廓的异常检测器可以将重建误差矩阵映射到异常的分数,以识别故障的天线阵列,并将分类F量度(F-M)增加到46%。我们在天线测试系统收集的时间序列热量量表上展示了我们的方法。传统上,变形自身摩擦(VAE)学习观察噪声可以产生比具有恒定噪声假设的VAE更好的结果。然而,我们证明这不是对这种低级模式的异常检测的情况,有两个原因。首先,结合所学到的观察噪声的基线度量重建概率不能分化异常模式。其次,具有较低观察噪声假设的VAE的接收器操作特性(ROC)曲线下的区域比具有学习噪声的VAE高出11.83%。
translated by 谷歌翻译
Despite the impact of psychiatric disorders on clinical health, early-stage diagnosis remains a challenge. Machine learning studies have shown that classifiers tend to be overly narrow in the diagnosis prediction task. The overlap between conditions leads to high heterogeneity among participants that is not adequately captured by classification models. To address this issue, normative approaches have surged as an alternative method. By using a generative model to learn the distribution of healthy brain data patterns, we can identify the presence of pathologies as deviations or outliers from the distribution learned by the model. In particular, deep generative models showed great results as normative models to identify neurological lesions in the brain. However, unlike most neurological lesions, psychiatric disorders present subtle changes widespread in several brain regions, making these alterations challenging to identify. In this work, we evaluate the performance of transformer-based normative models to detect subtle brain changes expressed in adolescents and young adults. We trained our model on 3D MRI scans of neurotypical individuals (N=1,765). Then, we obtained the likelihood of neurotypical controls and psychiatric patients with early-stage schizophrenia from an independent dataset (N=93) from the Human Connectome Project. Using the predicted likelihood of the scans as a proxy for a normative score, we obtained an AUROC of 0.82 when assessing the difference between controls and individuals with early-stage schizophrenia. Our approach surpassed recent normative methods based on brain age and Gaussian Process, showing the promising use of deep generative models to help in individualised analyses.
translated by 谷歌翻译
In this paper, we learn a diffusion model to generate 3D data on a scene-scale. Specifically, our model crafts a 3D scene consisting of multiple objects, while recent diffusion research has focused on a single object. To realize our goal, we represent a scene with discrete class labels, i.e., categorical distribution, to assign multiple objects into semantic categories. Thus, we extend discrete diffusion models to learn scene-scale categorical distributions. In addition, we validate that a latent diffusion model can reduce computation costs for training and deploying. To the best of our knowledge, our work is the first to apply discrete and latent diffusion for 3D categorical data on a scene-scale. We further propose to perform semantic scene completion (SSC) by learning a conditional distribution using our diffusion model, where the condition is a partial observation in a sparse point cloud. In experiments, we empirically show that our diffusion models not only generate reasonable scenes, but also perform the scene completion task better than a discriminative model. Our code and models are available at https://github.com/zoomin-lee/scene-scale-diffusion
translated by 谷歌翻译
可以使用医学成像数据研究人类解剖学,形态和相关疾病。但是,访问医学成像数据受到治理和隐私问题,数据所有权和获取成本的限制,从而限制了我们理解人体的能力。解决此问题的一个可能解决方案是创建能够学习的模型,然后生成以相关性的特定特征(例如,年龄,性别和疾病状态)来生成人体的合成图像。最近,以神经网络形式的深层生成模型已被用于创建自然场景的合成2D图像。尽管如此,数据稀缺性,算法和计算局限性仍阻碍了具有正确解剖形态的高分辨率3D体积成像数据的能力。这项工作提出了一个生成模型,可以缩放以产生人类大脑的解剖学正确,高分辨率和现实的图像,并具有必要的质量,以允许进一步的下游分析。产生潜在无限数据的能力不仅能够对人体解剖学和病理学进行大规模研究,而不会危及患者的隐私,而且还可以在异常检测,模态综合,有限的数据和公平和公平和公平和公平和公平和公平和公平和公平和公平和公平和公平和公平和公平的学习领域进行显着提高。道德AI。代码和训练有素的模型可在以下网址提供:https://github.com/amigolab/synthanatomy。
translated by 谷歌翻译
深度学习表现出巨大的生成任务潜力。生成模型是可以根据某些隐含参数随机生成观测值的模型类。最近,扩散模型由于其发电能力而成为一类生成模型。如今,已经取得了巨大的成就。除了计算机视觉,语音产生,生物信息学和自然语言处理外,还需要在该领域探索更多应用。但是,扩散模型具有缓慢生成过程的自然缺点,从而导致许多增强的作品。该调查总结了扩散模型的领域。我们首先说明了两项具有里程碑意义的作品的主要问题-DDPM和DSM。然后,我们提供各种高级技术,以加快扩散模型 - 训练时间表,无训练采样,混合模型以及得分和扩散统一。关于现有模型,我们还根据特定的NFE提供了FID得分的基准和NLL。此外,引入了带有扩散模型的应用程序,包括计算机视觉,序列建模,音频和科学AI。最后,该领域以及局限性和进一步的方向都进行了摘要。
translated by 谷歌翻译
Recent advances in computer vision have shown promising results in image generation. Diffusion probabilistic models in particular have generated realistic images from textual input, as demonstrated by DALL-E 2, Imagen and Stable Diffusion. However, their use in medicine, where image data typically comprises three-dimensional volumes, has not been systematically evaluated. Synthetic images may play a crucial role in privacy preserving artificial intelligence and can also be used to augment small datasets. Here we show that diffusion probabilistic models can synthesize high quality medical imaging data, which we show for Magnetic Resonance Images (MRI) and Computed Tomography (CT) images. We provide quantitative measurements of their performance through a reader study with two medical experts who rated the quality of the synthesized images in three categories: Realistic image appearance, anatomical correctness and consistency between slices. Furthermore, we demonstrate that synthetic images can be used in a self-supervised pre-training and improve the performance of breast segmentation models when data is scarce (dice score 0.91 vs. 0.95 without vs. with synthetic data).
translated by 谷歌翻译
We present high quality image synthesis results using diffusion probabilistic models, a class of latent variable models inspired by considerations from nonequilibrium thermodynamics. Our best results are obtained by training on a weighted variational bound designed according to a novel connection between diffusion probabilistic models and denoising score matching with Langevin dynamics, and our models naturally admit a progressive lossy decompression scheme that can be interpreted as a generalization of autoregressive decoding. On the unconditional CIFAR10 dataset, we obtain an Inception score of 9.46 and a state-of-the-art FID score of 3.17. On 256x256 LSUN, we obtain sample quality similar to ProgressiveGAN. Our implementation is available at https://github.com/hojonathanho/diffusion.
translated by 谷歌翻译