当前的无监督异常定位方法依赖于生成模型来学习正常图像的分布,后来用于识别从重建图像上的错误中得出的潜在异常区域。但是,几乎所有先前的文献的主要局限性是需要使用异常图像来设置特定于类的阈值以定位异常。这限制了它们在现实的情况下的可用性,其中通常只能访问正常数据。尽管存在这一主要缺点,但只有少量作品通过在培训期间将监督整合到注意地图上,从而解决了这一限制。在这项工作中,我们提出了一种新颖的公式,不需要访问异常的图像来定义阈值。此外,与最近的工作相反,提出的约束是以更有原则的方式制定的,在约束优化方面利用了知名的知识。特别是,对先前工作中注意图的平等约束被不平等约束所取代,这允许更具灵活性。此外,为了解决基于惩罚的功能的局限性,我们采用了流行的对数栏方法的扩展来处理约束。最后,我们提出了一个替代正规化项,该项最大化了注意图的香农熵,从而减少了所提出模型的超参数量。关于脑病变细分的两个公开数据集的全面实验表明,所提出的方法基本上优于相关文献,为无监督病变细分建立了新的最新结果,而无需访问异常图像。
translated by 谷歌翻译
目前无监督的异常本地化方法依赖于生成模型来学习正常图像的分布,后来用于识别从重建图像上的误差导出的潜在的异常区域。然而,几乎所有先前文献的主要限制是需要采用异常图像来设置特定类阈值以定位异常。这限制了它们在现实方案中的可用性,通常可以访问正常数据。尽管存在这一重大缺点,但只有少数工程才能通过整合在培训期间对关注地图的监督来解决了这一限制。在这项工作中,我们提出了一种新的制定,不需要访问异常来定义阈值的图像。此外,与最近的工作相反,所提出的约束以更具原则的方式配制,利用了在约束优化中的知名知识。特别是,在现有工作中的注意图上的平等限制由不等式约束取代,这允许更灵活性。此外,为了解决基于惩罚的函数的限制,我们使用流行的日志屏障方法的扩展来处理约束。对流行的Brats'19数据集的综合实验表明,该方法的方法显着优于相关文献,为无监督的病变细分建立了新的最先进结果。
translated by 谷歌翻译
人脑解剖图像的专家解释是神经放射学的中心部分。已经提出了几种基于机器学习的技术来协助分析过程。但是,通常需要对ML模型进行培训以执行特定的任务,例如脑肿瘤分割或分类。相应的培训数据不仅需要费力的手动注释,而且人脑MRI中可以存在多种异常 - 甚至同时发生,这使得所有可能的异常情况都非常具有挑战性。因此,可能的解决方案是一种无监督的异常检测(UAD)系统,可以从健康受试者的未标记数据集中学习数据分布,然后应用以检测​​分布样本。然后,这种技术可用于检测异常 - 病变或异常,例如脑肿瘤,而无需明确训练该特定病理的模型。过去已经为此任务提出了几种基于变异的自动编码器(VAE)技术。即使它们在人为模拟的异常情况下表现良好,但其中许多在检测临床数据中的异常情况下表现较差。这项研究提出了“上下文编码” VAE(CEVAE)模型的紧凑版本,并结合了预处理和后处理步骤,创建了UAD管道(Strega)(Strega),该步骤对临床数据更强大,并显示其在检测到其检测方面的适用性脑MRI中的肿瘤等异常。 The proposed pipeline achieved a Dice score of 0.642$\pm$0.101 while detecting tumours in T2w images of the BraTS dataset and 0.859$\pm$0.112 while detecting artificially induced anomalies, while the best performing baseline achieved 0.522$\pm$0.135 and 0.783$\ PM分别为0.111美元。
translated by 谷歌翻译
在本文中,我们认为由于专家的昂贵的像素级注释以及大量未经发布的正常和异常图像扫描,近年来近年来引起了近年来越来越多的注意力的问题。我们介绍了一个分割网络,该分割网络利用对抗学习将图像分成两种切割,其中一个落入用户提供的参考分布。这种基于对抗的选择性切割网络(ASC-Net)桥接基于簇的深度分割和基于对抗基于对抗的异常/新奇检测算法的两个域。我们的ASC网络从正常和异常的医疗扫描中学到医疗扫描中的分段异常,没有任何掩盖的监督。我们在三个公共数据集中评估这一无监督的异常分段模型,即脑肿瘤细分的Brats 2019,肝脏病变分割和脑病变细分的MS-SEG 2015,以及脑肿瘤细分的私人数据集。与现有方法相比,我们的模型展示了无监督异常分段任务中的巨大性能增益。虽然与监督学习算法相比,仍有进一步提高性能的空间,但有希望的实验结果和有趣的观察揭示了使用用户定义的知识构建无监督学习算法的医疗异常识别。
translated by 谷歌翻译
当前,借助监督学习方法,基于深度学习的视觉检查已取得了非常成功的成功。但是,在实际的工业场景中,缺陷样本的稀缺性,注释的成本以及缺乏缺陷的先验知识可能会使基于监督的方法无效。近年来,无监督的异常定位算法已在工业检查任务中广泛使用。本文旨在通过深入学习在工业图像中无视无视的异常定位中的最新成就来帮助该领域的研究人员。该调查回顾了120多个重要出版物,其中涵盖了异常定位的各个方面,主要涵盖了所审查方法的各种概念,挑战,分类法,基准数据集和定量性能比较。在审查迄今为止的成就时,本文提供了一些未来研究方向的详细预测和分析。这篇综述为对工业异常本地化感兴趣的研究人员提供了详细的技术信息,并希望将其应用于其他领域的异常本质。
translated by 谷歌翻译
无监督的异常检测已成为一种流行的方法,可以检测医学图像中的病理,因为它不需要监督或标签进行训练。最常见的是,异常检测模型会生成输入映像的“正常”版本,而Pixel $ l^p $ - 两者的差异用于本地化异常。但是,大多数医学图像中存在的复杂解剖结构的不完善重建通常是由于不完善的重建而发生的。该方法还无法检测到没有与周围组织的强度差异很大的异常。我们建议使用特征映射功能解决此问题,该功能将输入强度图像转换为具有多个通道的空间,在该空间中可以沿着从原始图像提取的不同判别特征地图检测到异常。然后,我们使用结构相似性损失在该空间中训练自动编码器模型,该模型不仅考虑强度差异,而且考虑对比度和结构。我们的方法大大提高了大脑MRI的两个医学数据集的性能。代码和实验可从https://github.com/felime/feature-autoencoder获得
translated by 谷歌翻译
现代深层神经网络在医学图像分割任务中取得了显着进展。然而,最近观察到他们倾向于产生过于自信的估计,即使在高度不确定性的情况下,导致校准差和不可靠的模型。在这项工作中,我们介绍了错误的预测(MEEP)的最大熵,分割网络的培训策略,这些网络选择性地惩罚过度自信预测,仅关注错误分类的像素。特别是,我们设计了一个正规化术语,鼓励出于错误的预测,增加了复杂场景中的网络不确定性。我们的方法对于神经结构不可知,不会提高模型复杂性,并且可以与多分割损耗功能耦合。我们在两个具有挑战性的医学图像分割任务中将拟议的策略基准:脑磁共振图像(MRI)中的白质超强度病变,心脏MRI中的心房分段。实验结果表明,具有标准分割损耗的耦合MEEP不仅可以改善模型校准,而且还导致分割质量。
translated by 谷歌翻译
学习相似性是医学图像分析的关键方面,尤其是在推荐系统或发现图像中解剖学数据的解释时。大多数现有方法使用单个公制学习者在嵌入空间中学习了这种相似性。但是,图像具有多种对象属性,例如颜色,形状或人工制品。使用单个公制学习者编码此类属性是不足的,并且可能无法概括。取而代之的是,多个学习者可以专注于总体嵌入子空间中这些属性的各个方面。但是,这意味着每个新数据集经验发现的学习者数量。这项工作,动态的子空间学习者,建议通过消除需要了解学习者的数量并在培训期间汇总新的子空间学习者来动态利用多个学习者。此外,通过将注意力模块整合到我们的方法中,可以实现此类子空间学习的视觉解释性。这种集成的注意机制提供了判别图像特征的视觉见解,这些特征有助于图像集的聚类和嵌入功能的视觉解释。在应用图像聚类,图像检索和弱监督分段的应用中,评估了我们基于注意力的动态子空间学习者的好处。我们的方法通过多个学习者基准的表现取得了竞争成果,并且在三个不同的公共基准数据集上的聚类和检索分数方面显着优于分类网络。此外,我们的注意力图提供了代理标签,与最先进的解释技术相比,骰子得分最高15%。
translated by 谷歌翻译
Unsupervised pixel-level defective region segmentation is an important task in image-based anomaly detection for various industrial applications. The state-of-the-art methods have their own advantages and limitations: matrix-decomposition-based methods are robust to noise but lack complex background image modeling capability; representation-based methods are good at defective region localization but lack accuracy in defective region shape contour extraction; reconstruction-based methods detected defective region match well with the ground truth defective region shape contour but are noisy. To combine the best of both worlds, we present an unsupervised patch autoencoder based deep image decomposition (PAEDID) method for defective region segmentation. In the training stage, we learn the common background as a deep image prior by a patch autoencoder (PAE) network. In the inference stage, we formulate anomaly detection as an image decomposition problem with the deep image prior and domain-specific regularizations. By adopting the proposed approach, the defective regions in the image can be accurately extracted in an unsupervised fashion. We demonstrate the effectiveness of the PAEDID method in simulation studies and an industrial dataset in the case study.
translated by 谷歌翻译
机器学习模型通常会遇到与训练分布不同的样本。无法识别分布(OOD)样本,因此将该样本分配给课堂标签会显着损害模​​型的可靠性。由于其对在开放世界中的安全部署模型的重要性,该问题引起了重大关注。由于对所有可能的未知分布进行建模的棘手性,检测OOD样品是具有挑战性的。迄今为止,一些研究领域解决了检测陌生样本的问题,包括异常检测,新颖性检测,一级学习,开放式识别识别和分布外检测。尽管有相似和共同的概念,但分别分布,开放式检测和异常检测已被独立研究。因此,这些研究途径尚未交叉授粉,创造了研究障碍。尽管某些调查打算概述这些方法,但它们似乎仅关注特定领域,而无需检查不同领域之间的关系。这项调查旨在在确定其共同点的同时,对各个领域的众多著名作品进行跨域和全面的审查。研究人员可以从不同领域的研究进展概述中受益,并协同发展未来的方法。此外,据我们所知,虽然进行异常检测或单级学习进行了调查,但没有关于分布外检测的全面或最新的调查,我们的调查可广泛涵盖。最后,有了统一的跨域视角,我们讨论并阐明了未来的研究线,打算将这些领域更加紧密地融为一体。
translated by 谷歌翻译
Deep learning (DL) methods where interpretability is intrinsically considered as part of the model are required to better understand the relationship of clinical and imaging-based attributes with DL outcomes, thus facilitating their use in the reasoning behind medical decisions. Latent space representations built with variational autoencoders (VAE) do not ensure individual control of data attributes. Attribute-based methods enforcing attribute disentanglement have been proposed in the literature for classical computer vision tasks in benchmark data. In this paper, we propose a VAE approach, the Attri-VAE, that includes an attribute regularization term to associate clinical and medical imaging attributes with different regularized dimensions in the generated latent space, enabling a better-disentangled interpretation of the attributes. Furthermore, the generated attention maps explained the attribute encoding in the regularized latent space dimensions. Using the Attri-VAE approach we analyzed healthy and myocardial infarction patients with clinical, cardiac morphology, and radiomics attributes. The proposed model provided an excellent trade-off between reconstruction fidelity, disentanglement, and interpretability, outperforming state-of-the-art VAE approaches according to several quantitative metrics. The resulting latent space allowed the generation of realistic synthetic data in the trajectory between two distinct input samples or along a specific attribute dimension to better interpret changes between different cardiac conditions.
translated by 谷歌翻译
大型医学成像数据集变得越来越多。这些数据集中的一个普遍挑战是确保每个样本满足没有重要人工制品的最低质量要求。尽管已经开发出广泛的现有自动方法来识别医学成像中的缺陷和人工制品,但它们主要依赖于渴望数据的方法。特别是,缺乏可用于培训的手工艺品的足够扫描,在临床研究中设计和部署机器学习方面造成了障碍。为了解决这个问题,我们提出了一个具有四个主要组成部分的新颖框架:(1)一组受磁共振物理启发的手工艺发电机,以损坏大脑MRI扫描和增强培训数据集,(2)一组抽象和工程的功能,紧凑地表示图像,(3)一个特征选择过程,取决于人工制品的类别以提高分类性能,以及(4)一组受过训练以识别人工制品的支持向量机(SVM)分类器。我们的新颖贡献是三重的:首先,我们使用新型的基于物理的人工制品发生器来生成以受控的人工制品作为数据增强技术的合成脑MRI扫描。这将避免使用稀有人工制品的劳动密集型收集和标记过程。其次,我们提出了开发的大量抽象和工程图像特征,以识别9种不同的结构MRI伪像。最后,我们使用一个基于人工制品的功能选择块,该块,对于每类的人工制品,可以找到提供最佳分类性能的功能集。我们对具有人工生成的人工制品的大量数据扫描进行了验证实验,并且在一项多发性硬化症临床试验中,专家确定了真实的人工制品,这表明拟议管道表现优于传统方法。
translated by 谷歌翻译
新奇检测是识别不属于目标类分布的样本的任务。在培训期间,缺乏新颖的课程,防止使用传统分类方法。深度自动化器已被广泛用作许多无监督的新奇检测方法的基础。特别地,上下文自动码器在新颖的检测任务中已经成功了,因为他们通过从随机屏蔽的图像重建原始图像来学习的更有效的陈述。然而,上下文AutoEncoders的显着缺点是随机屏蔽不能一致地涵盖输入图像的重要结构,导致次优表示 - 特别是对于新颖性检测任务。在本文中,为了优化输入掩蔽,我们设计了由两个竞争网络,掩模模块和重建器组成的框架。掩码模块是一个卷积的AutoEncoder,用于生成涵盖最重要的图像的最佳掩码。或者,重建器是卷积编码器解码器,其旨在从屏蔽图像重建未受带的图像。网络训练以侵略的方式训练,其中掩模模块生成应用于给予重构的图像的掩码。以这种方式,掩码模块寻求最大化重建错误的重建错误最小化。当应用于新颖性检测时,与上下文自动置换器相比,所提出的方法学习语义上更丰富的表示,并通过更新的屏蔽增强了在测试时间的新颖性检测。 MNIST和CIFAR-10图像数据集上的新奇检测实验证明了所提出的方法对尖端方法的优越性。在用于新颖性检测的UCSD视频数据集的进一步实验中,所提出的方法实现了最先进的结果。
translated by 谷歌翻译
Clinical diagnostic and treatment decisions rely upon the integration of patient-specific data with clinical reasoning. Cancer presents a unique context that influence treatment decisions, given its diverse forms of disease evolution. Biomedical imaging allows noninvasive assessment of disease based on visual evaluations leading to better clinical outcome prediction and therapeutic planning. Early methods of brain cancer characterization predominantly relied upon statistical modeling of neuroimaging data. Driven by the breakthroughs in computer vision, deep learning became the de facto standard in the domain of medical imaging. Integrated statistical and deep learning methods have recently emerged as a new direction in the automation of the medical practice unifying multi-disciplinary knowledge in medicine, statistics, and artificial intelligence. In this study, we critically review major statistical and deep learning models and their applications in brain imaging research with a focus on MRI-based brain tumor segmentation. The results do highlight that model-driven classical statistics and data-driven deep learning is a potent combination for developing automated systems in clinical oncology.
translated by 谷歌翻译
生成的对抗网络(GAN)是在众多领域成功使用的一种强大的深度学习模型。它们属于一个称为生成方法的更广泛的家族,该家族通过从真实示例中学习样本分布来生成新数据。在临床背景下,与传统的生成方法相比,GAN在捕获空间复杂,非线性和潜在微妙的疾病作用方面表现出增强的能力。这篇综述评估了有关gan在各种神经系统疾病的成像研究中的应用的现有文献,包括阿尔茨海默氏病,脑肿瘤,脑老化和多发性硬化症。我们为每个应用程序提供了各种GAN方法的直观解释,并进一步讨论了在神经影像学中利用gans的主要挑战,开放问题以及有希望的未来方向。我们旨在通过强调如何利用gan来支持临床决策,并有助于更好地理解脑部疾病的结构和功能模式,从而弥合先进的深度学习方法和神经病学研究之间的差距。
translated by 谷歌翻译
小儿肌肉骨骼系统的临床诊断依赖于医学成像检查的分析。在医学图像处理管道中,使用深度学习算法的语义分割使人可以自动生成患者特定的三维解剖模型,这对于形态学评估至关重要。但是,小儿成像资源的稀缺性可能导致单个深层分割模型的准确性和泛化性能降低。在这项研究中,我们建议设计一个新型的多任务多任务多域学习框架,在该框架中,单个分割网络对由解剖学的不同部分产生的多个数据集进行了优化。与以前的方法不同,我们同时考虑多个强度域和分割任务来克服小儿数据的固有稀缺性,同时利用成像数据集之间的共享特征。为了进一步提高概括能力,我们从自然图像分类中采用了转移学习方案,以及旨在在共享表示中促进域特异性群集的多尺度对比正则化,以及多连接解剖学先验来执行解剖学上一致的预测。我们评估了使用脚踝,膝盖和肩关节的三个稀缺和小儿成像数据集进行骨分割的贡献。我们的结果表明,所提出的方法在骰子指标中的表现优于个人,转移和共享分割方案,并具有统计学上足够的利润。拟议的模型为智能使用成像资源和更好地管理小儿肌肉骨骼疾病提供了新的观点。
translated by 谷歌翻译
在计算机视觉领域,异常检测最近引起了越来越多的关注,这可能是由于其广泛的应用程序从工业生产线上的产品故障检测到视频监视中即将发生的事件检测到在医疗扫描中发现病变。不管域如何,通常将异常检测构架为一级分类任务,其中仅在正常示例上进行学习。整个成功的异常检测方法的家庭基于学习重建掩盖的正常输入(例如贴片,未来帧等),并将重建误差的幅度作为异常水平的指标。与其他基于重建的方法不同,我们提出了一种新颖的自我监督蒙面的卷积变压器块(SSMCTB),该卷积变压器块(SSMCTB)包括基于重建的功能在核心架构层面上。拟议的自我监督块非常灵活,可以在神经网络的任何层上掩盖信息,并与广泛的神经体系结构兼容。在这项工作中,我们扩展了以前的自我监督预测性卷积专注块(SSPCAB),并具有3D掩盖的卷积层,以及用于频道注意的变压器。此外,我们表明我们的块适用于更广泛的任务,在医学图像和热视频中添加异常检测到基于RGB图像和监视视频的先前考虑的任务。我们通过将SSMCTB的普遍性和灵活性整合到多个最先进的神经模型中,以进行异常检测,从而带来了经验结果,可以证实对五个基准的绩效改进:MVTEC AD,BRATS,BRATS,Avenue,Shanghaitech和Thermal和Thermal和Thermal罕见事件。我们在https://github.com/ristea/ssmctb上发布代码和数据作为开源。
translated by 谷歌翻译
甚至在没有受限,监督的情况下,也提出了甚至在没有受限或有限的情况下学习普遍陈述的方法。使用适度数量的数据可以微调新的目标任务,或者直接在相应任务中实现显着性能的无奈域中使用的良好普遍表示。这种缓解数据和注释要求为计算机愿景和医疗保健的应用提供了诱人的前景。在本辅导纸上,我们激励了对解散的陈述,目前关键理论和详细的实际构建块和学习此类表示的标准的需求。我们讨论医学成像和计算机视觉中的应用,强调了在示例钥匙作品中进行的选择。我们通过呈现剩下的挑战和机会来结束。
translated by 谷歌翻译
与行业4.0的发展相一致,越来越多的关注被表面缺陷检测领域所吸引。提高效率并节省劳动力成本已稳步成为行业领域引起人们关注的问题,近年来,基于深度学习的算法比传统的视力检查方法更好。尽管现有的基于深度学习的算法偏向于监督学习,但这不仅需要大量标记的数据和大量的劳动力,而且还效率低下,并且有一定的局限性。相比之下,最近的研究表明,无监督的学习在解决视觉工业异常检测的高于缺点方面具有巨大的潜力。在这项调查中,我们总结了当前的挑战,并详细概述了最近提出的针对视觉工业异常检测的无监督算法,涵盖了五个类别,其创新点和框架详细描述了。同时,提供了包含表面图像样本的公开可用数据集的信息。通过比较不同类别的方法,总结了异常检测算法的优点和缺点。预计将协助研究社区和行业发展更广泛,更跨域的观点。
translated by 谷歌翻译
即使自动编码器(AES)具有无标签的学习紧凑表示的理想特性,并且已广泛应用于分布式(OOD)检测,但它们通常仍然很熟悉,并且在检测正常的异常值中被错误地使用并被错误地使用。异常分布是强烈重叠的。通常,假定学习的歧管包含关键信息,这对于描述训练分布中的样本很重要,并且离群值的重建导致较高的残余错误。但是,最近的工作表明,AE在重建某些类型的OOD样品方面可能会更好。在这项工作中,我们挑战了这一假设,并研究了自动编码器在提出两个不同任务时实际学习的内容。首先,我们提出了两个基于FR \'Echet Inception距离(FID)的指标和受过训练的分类器的置信度得分,以评估AES是否可以学习训练分布并可靠地识别其他领域的样本。其次,我们研究了AE是否能够在更具挑战性的肺病理检测任务上合成来自具有异常区域样本的正常图像。我们发现,最新的(SOTA)AES要么无法限制潜在的多种流形并允许重建异常模式,要么无法准确地从其潜伏分布中恢复输入,从而导致模糊或失误的重建。 。我们提出了新型的可变形自动编码器(morphaeus)来学习感知的全局图像先验,并根据估计的致密变形场局部适应其形态法。我们在检测OOD和病理学方面表现出优于无监督方法的卓越性能。
translated by 谷歌翻译