深度神经网络在医学图像分析中带来了显着突破。但是,由于其渴望数据的性质,医学成像项目中适度的数据集大小可能会阻碍其全部潜力。生成合成数据提供了一种有希望的替代方案,可以补充培训数据集并进行更大范围的医学图像研究。最近,扩散模型通过产生逼真的合成图像引起了计算机视觉社区的注意。在这项研究中,我们使用潜在扩散模型探索从高分辨率3D脑图像中生成合成图像。我们使用来自英国生物银行数据集的T1W MRI图像(n = 31,740)来训练我们的模型,以了解脑图像的概率分布,该脑图像以协变量为基础,例如年龄,性别和大脑结构量。我们发现我们的模型创建了现实的数据,并且可以使用条件变量有效地控制数据生成。除此之外,我们创建了一个带有100,000次脑图像的合成数据集,并使科学界公开使用。
translated by 谷歌翻译
Recent advances in computer vision have shown promising results in image generation. Diffusion probabilistic models in particular have generated realistic images from textual input, as demonstrated by DALL-E 2, Imagen and Stable Diffusion. However, their use in medicine, where image data typically comprises three-dimensional volumes, has not been systematically evaluated. Synthetic images may play a crucial role in privacy preserving artificial intelligence and can also be used to augment small datasets. Here we show that diffusion probabilistic models can synthesize high quality medical imaging data, which we show for Magnetic Resonance Images (MRI) and Computed Tomography (CT) images. We provide quantitative measurements of their performance through a reader study with two medical experts who rated the quality of the synthesized images in three categories: Realistic image appearance, anatomical correctness and consistency between slices. Furthermore, we demonstrate that synthetic images can be used in a self-supervised pre-training and improve the performance of breast segmentation models when data is scarce (dice score 0.91 vs. 0.95 without vs. with synthetic data).
translated by 谷歌翻译
The success of Deep Learning applications critically depends on the quality and scale of the underlying training data. Generative adversarial networks (GANs) can generate arbitrary large datasets, but diversity and fidelity are limited, which has recently been addressed by denoising diffusion probabilistic models (DDPMs) whose superiority has been demonstrated on natural images. In this study, we propose Medfusion, a conditional latent DDPM for medical images. We compare our DDPM-based model against GAN-based models, which constitute the current state-of-the-art in the medical domain. Medfusion was trained and compared with (i) StyleGan-3 on n=101,442 images from the AIROGS challenge dataset to generate fundoscopies with and without glaucoma, (ii) ProGAN on n=191,027 from the CheXpert dataset to generate radiographs with and without cardiomegaly and (iii) wGAN on n=19,557 images from the CRCMS dataset to generate histopathological images with and without microsatellite stability. In the AIROGS, CRMCS, and CheXpert datasets, Medfusion achieved lower (=better) FID than the GANs (11.63 versus 20.43, 30.03 versus 49.26, and 17.28 versus 84.31). Also, fidelity (precision) and diversity (recall) were higher (=better) for Medfusion in all three datasets. Our study shows that DDPM are a superior alternative to GANs for image synthesis in the medical domain.
translated by 谷歌翻译
生成对抗网络(GAN)具有许多潜在的医学成像应用,包括数据扩展,域适应和模型解释。由于图形处理单元(GPU)的记忆力有限,因此在低分辨率的医学图像上对当前的3D GAN模型进行了训练,因此这些模型要么无法扩展到高分辨率,要么容易出现斑驳的人工制品。在这项工作中,我们提出了一种新颖的端到端GAN体系结构,可以生成高分辨率3D图像。我们通过使用训练和推理之间的不同配置来实现这一目标。在训练过程中,我们采用了层次结构,该结构同时生成图像的低分辨率版本和高分辨率图像的随机选择子量。层次设计具有两个优点:首先,对高分辨率图像训练的记忆需求在子量之间摊销。此外,将高分辨率子体积固定在单个低分辨率图像上可确保子量化之间的解剖一致性。在推断期间,我们的模型可以直接生成完整的高分辨率图像。我们还将具有类似层次结构的编码器纳入模型中,以从图像中提取特征。 3D胸CT和脑MRI的实验表明,我们的方法在图像生成中的表现优于最新技术。我们还证明了所提出的模型在数据增强和临床相关特征提取中的临床应用。
translated by 谷歌翻译
可以使用医学成像数据研究人类解剖学,形态和相关疾病。但是,访问医学成像数据受到治理和隐私问题,数据所有权和获取成本的限制,从而限制了我们理解人体的能力。解决此问题的一个可能解决方案是创建能够学习的模型,然后生成以相关性的特定特征(例如,年龄,性别和疾病状态)来生成人体的合成图像。最近,以神经网络形式的深层生成模型已被用于创建自然场景的合成2D图像。尽管如此,数据稀缺性,算法和计算局限性仍阻碍了具有正确解剖形态的高分辨率3D体积成像数据的能力。这项工作提出了一个生成模型,可以缩放以产生人类大脑的解剖学正确,高分辨率和现实的图像,并具有必要的质量,以允许进一步的下游分析。产生潜在无限数据的能力不仅能够对人体解剖学和病理学进行大规模研究,而不会危及患者的隐私,而且还可以在异常检测,模态综合,有限的数据和公平和公平和公平和公平和公平和公平和公平和公平和公平和公平和公平和公平和公平的学习领域进行显着提高。道德AI。代码和训练有素的模型可在以下网址提供:https://github.com/amigolab/synthanatomy。
translated by 谷歌翻译
病理学家对患病组织的视觉微观研究一直是一个多世纪以来癌症诊断和预后的基石。最近,深度学习方法在组织图像的分析和分类方面取得了重大进步。但是,关于此类模型在生成组织病理学图像的实用性方面的工作有限。这些合成图像在病理学中有多种应用,包括教育,熟练程度测试,隐私和数据共享的公用事业。最近,引入了扩散概率模型以生成高质量的图像。在这里,我们首次研究了此类模型的潜在用途以及优先的形态加权和颜色归一化,以合成脑癌的高质量组织病理学图像。我们的详细结果表明,与生成对抗网络相比,扩散概率模型能够合成各种组织病理学图像,并且具有较高的性能。
translated by 谷歌翻译
DeNoising扩散模型代表了计算机视觉中最新的主题,在生成建模领域表现出了显着的结果。扩散模型是一个基于两个阶段的深层生成模型,一个正向扩散阶段和反向扩散阶段。在正向扩散阶段,通过添加高斯噪声,输入数据在几个步骤中逐渐受到干扰。在反向阶段,模型的任务是通过学习逐步逆转扩散过程来恢复原始输入数据。尽管已知的计算负担,即由于采样过程中涉及的步骤数量,扩散模型对生成样品的质量和多样性得到了广泛赞赏。在这项调查中,我们对视觉中应用的denoising扩散模型的文章进行了全面综述,包括该领域的理论和实际贡献。首先,我们识别并介绍了三个通用扩散建模框架,这些框架基于扩散概率模型,噪声调节得分网络和随机微分方程。我们进一步讨论了扩散模型与其他深层生成模型之间的关系,包括变异自动编码器,生成对抗网络,基于能量的模型,自回归模型和正常流量。然后,我们介绍了计算机视觉中应用的扩散模型的多角度分类。最后,我们说明了扩散模型的当前局限性,并设想了一些有趣的未来研究方向。
translated by 谷歌翻译
基于深度学习的计算机辅助诊断(CAD)已成为医疗行业的重要诊断技术,有效提高诊断精度。然而,脑肿瘤磁共振(MR)图像数据集的稀缺性导致深度学习算法的低性能。传统数据增强(DA)生成的转换图像的分布本质上类似于原始的图像,从而在泛化能力方面产生有限的性能。这项工作提高了具有结构相似性损失功能(PGGAN-SSIM)的GAN的逐步生长,以解决图像模糊问题和模型崩溃。我们还探讨了其他基于GAN的数据增强,以证明所提出的模型的有效性。我们的结果表明,PGGAN-SSIM成功地生成了256x256的现实脑肿瘤MR图像,填充了原始数据集未发现的真实图像分布。此外,PGGAN-SSSIM超过了其他基于GAN的方法,实现了FRECHET成立距离(FID)和多尺度结构相似性(MS-SSIM)的有希望的性能提升。
translated by 谷歌翻译
为了实现良好的性能和概括性,医疗图像分割模型应在具有足够可变性的大量数据集上进行培训。由于道德和治理限制以及与标签数据相关的成本,经常对科学发展进行扼杀,并经过对有限数据的培训和测试。数据增强通常用于人为地增加数据分布的可变性并提高模型的通用性。最近的作品探索了图像合成的深层生成模型,因为这种方法将使有效的无限数据生成多种多样的数据,从而解决了通用性和数据访问问题。但是,许多提出的解决方案限制了用户对生成内容的控制。在这项工作中,我们提出了Brainspade,该模型将基于合成扩散的标签发生器与语义图像发生器结合在一起。我们的模型可以在有或没有感兴趣的病理的情况下产生完全合成的大脑标签,然后产生任意引导样式的相应MRI图像。实验表明,Brainspade合成数据可用于训练分割模型,其性能与在真实数据中训练的模型相当。
translated by 谷歌翻译
通过将图像形成过程分解成逐个申请的去噪自身额,扩散模型(DMS)实现了最先进的合成导致图像数据和超越。另外,它们的配方允许引导机构来控制图像生成过程而不会再刷新。然而,由于这些模型通常在像素空间中直接操作,因此强大的DMS的优化通常消耗数百个GPU天,并且由于顺序评估,推理是昂贵的。为了在保留其质量和灵活性的同时启用有限计算资源的DM培训,我们将它们应用于强大的佩带自动化器的潜在空间。与以前的工作相比,这种代表上的培训扩散模型允许第一次达到复杂性降低和细节保存之间的近乎最佳点,极大地提高了视觉保真度。通过将跨关注层引入模型架构中,我们将扩散模型转化为强大而柔性的发电机,以进行诸如文本或边界盒和高分辨率合成的通用调节输入,以卷积方式变得可以实现。我们的潜在扩散模型(LDMS)实现了一种新的技术状态,可在各种任务中进行图像修复和高竞争性能,包括无条件图像生成,语义场景合成和超级分辨率,同时与基于像素的DMS相比显着降低计算要求。代码可在https://github.com/compvis/lattent-diffusion获得。
translated by 谷歌翻译
We show that diffusion models can achieve image sample quality superior to the current state-of-the-art generative models. We achieve this on unconditional image synthesis by finding a better architecture through a series of ablations. For conditional image synthesis, we further improve sample quality with classifier guidance: a simple, compute-efficient method for trading off diversity for fidelity using gradients from a classifier. We achieve an FID of 2.97 on ImageNet 128×128, 4.59 on ImageNet 256×256, and 7.72 on ImageNet 512×512, and we match BigGAN-deep even with as few as 25 forward passes per sample, all while maintaining better coverage of the distribution. Finally, we find that classifier guidance combines well with upsampling diffusion models, further improving FID to 3.94 on ImageNet 256×256 and 3.85 on ImageNet 512×512. We release our code at https://github.com/openai/guided-diffusion.
translated by 谷歌翻译
深层生成模型已成为检测数据中任意异常的有前途的工具,并分配了手动标记的必要性。最近,自回旋变压器在医学成像中取得了最先进的性能。但是,这些模型仍然具有一些内在的弱点,例如需要将图像建模为1D序列,在采样过程中误差的积累以及与变压器相关的显着推理时间。去核扩散概率模型是一类非自动回旋生成模型,最近显示出可以在计算机视觉中产生出色的样品(超过生成的对抗网络),并实现与变压器具有竞争力同时具有快速推理时间的对数可能性。扩散模型可以应用于自动编码器学到的潜在表示,使其易于扩展,并适用于高维数据(例如医学图像)的出色候选者。在这里,我们提出了一种基于扩散模型的方法,以检测和分段脑成像中的异常。通过在健康数据上训练模型,然后探索其在马尔可夫链上的扩散和反向步骤,我们可以识别潜在空间中的异常区域,因此可以确定像素空间中的异常情况。我们的扩散模型与一系列具有2D CT和MRI数据的实验相比,具有竞争性能,涉及合成和实际病理病变,推理时间大大减少,从而使它们的用法在临床上可行。
translated by 谷歌翻译
我们表明,级联扩散模型能够在类条件的想象生成基准上生成高保真图像,而无需辅助图像分类器的任何帮助来提高样品质量。级联的扩散模型包括多个扩散模型的流水线,其产生越来越多的分辨率,以最低分辨率的标准扩散模型开始,然后是一个或多个超分辨率扩散模型,其连续上追随图像并添加更高的分辨率细节。我们发现级联管道的样本质量至关重要的是调节增强,我们提出的数据增强较低分辨率调节输入到超级分辨率模型的方法。我们的实验表明,调节增强防止在级联模型中采样过程中的复合误差,帮助我们在256×256分辨率下,在128x128和4.88,优于63.02的分类精度分数,培训级联管道。 %(TOP-1)和84.06%(TOP-5)在256x256,优于VQ-VAE-2。
translated by 谷歌翻译
Tumor segmentation in histopathology images is often complicated by its composition of different histological subtypes and class imbalance. Oversampling subtypes with low prevalence features is not a satisfactory solution since it eventually leads to overfitting. We propose to create synthetic images with semantically-conditioned deep generative networks and to combine subtype-balanced synthetic images with the original dataset to achieve better segmentation performance. We show the suitability of Generative Adversarial Networks (GANs) and especially diffusion models to create realistic images based on subtype-conditioning for the use case of HER2-stained histopathology. Additionally, we show the capability of diffusion models to conditionally inpaint HER2 tumor areas with modified subtypes. Combining the original dataset with the same amount of diffusion-generated images increased the tumor Dice score from 0.833 to 0.854 and almost halved the variance between the HER2 subtype recalls. These results create the basis for more reliable automatic HER2 analysis with lower performance variance between individual HER2 subtypes.
translated by 谷歌翻译
通过源至目标模态丢失图像的插图可以促进医学成像中的下游任务。合成目标图像的普遍方法涉及通过生成对抗网络(GAN)的单发映射。然而,隐式表征图像分布的GAN模型可能会受到样本保真度和多样性的有限。在这里,我们提出了一种基于对抗扩散建模Syndiff的新方法,以提高医学图像合成的可靠性。为了捕获图像分布的直接相关性,Syndiff利用条件扩散过程逐步将噪声和源图像映射到目标图像上。对于推断期间的快速准确图像采样,大扩散步骤与反向扩散方向的对抗投影结合在一起。为了对未配对的数据集进行培训,设计了一个循环一致的体系结构,并使用两个耦合的扩散过程,以合成给定源的目标和给定的目标。报告了有关联合竞争性GAN和扩散模型在多对比度MRI和MRI-CT翻译中的效用的广泛评估。我们的示威表明,Syndiff在定性和定量上都可以针对竞争基线提供出色的性能。
translated by 谷歌翻译
Generative models have been very successful over the years and have received significant attention for synthetic data generation. As deep learning models are getting more and more complex, they require large amounts of data to perform accurately. In medical image analysis, such generative models play a crucial role as the available data is limited due to challenges related to data privacy, lack of data diversity, or uneven data distributions. In this paper, we present a method to generate brain tumor MRI images using generative adversarial networks. We have utilized StyleGAN2 with ADA methodology to generate high-quality brain MRI with tumors while using a significantly smaller amount of training data when compared to the existing approaches. We use three pre-trained models for transfer learning. Results demonstrate that the proposed method can learn the distributions of brain tumors. Furthermore, the model can generate high-quality synthetic brain MRI with a tumor that can limit the small sample size issues. The approach can addresses the limited data availability by generating realistic-looking brain MRI with tumors. The code is available at: ~\url{https://github.com/rizwanqureshi123/Brain-Tumor-Synthetic-Data}.
translated by 谷歌翻译
生成的对抗网络(GAN)是在众多领域成功使用的一种强大的深度学习模型。它们属于一个称为生成方法的更广泛的家族,该家族通过从真实示例中学习样本分布来生成新数据。在临床背景下,与传统的生成方法相比,GAN在捕获空间复杂,非线性和潜在微妙的疾病作用方面表现出增强的能力。这篇综述评估了有关gan在各种神经系统疾病的成像研究中的应用的现有文献,包括阿尔茨海默氏病,脑肿瘤,脑老化和多发性硬化症。我们为每个应用程序提供了各种GAN方法的直观解释,并进一步讨论了在神经影像学中利用gans的主要挑战,开放问题以及有希望的未来方向。我们旨在通过强调如何利用gan来支持临床决策,并有助于更好地理解脑部疾病的结构和功能模式,从而弥合先进的深度学习方法和神经病学研究之间的差距。
translated by 谷歌翻译
从文本描述中综合现实图像是计算机视觉中的主要挑战。当前对图像合成方法的文本缺乏产生代表文本描述符的高分辨率图像。大多数现有的研究都依赖于生成的对抗网络(GAN)或变异自动编码器(VAE)。甘斯具有产生更清晰的图像的能力,但缺乏输出的多样性,而VAE擅长生产各种输出,但是产生的图像通常是模糊的。考虑到gan和vaes的相对优势,我们提出了一个新的有条件VAE(CVAE)和条件gan(CGAN)网络架构,用于合成以文本描述为条件的图像。这项研究使用条件VAE作为初始发电机来生成文本描述符的高级草图。这款来自第一阶段的高级草图输出和文本描述符被用作条件GAN网络的输入。第二阶段GAN产生256x256高分辨率图像。所提出的体系结构受益于条件加强和有条件的GAN网络的残留块,以实现结果。使用CUB和Oxford-102数据集进行了多个实验,并将所提出方法的结果与Stackgan等最新技术进行了比较。实验表明,所提出的方法生成了以文本描述为条件的高分辨率图像,并使用两个数据集基于Inception和Frechet Inception评分产生竞争结果
translated by 谷歌翻译
Human organs constantly undergo anatomical changes due to a complex mix of short-term (e.g., heartbeat) and long-term (e.g., aging) factors. Evidently, prior knowledge of these factors will be beneficial when modeling their future state, i.e., via image generation. However, most of the medical image generation tasks only rely on the input from a single image, thus ignoring the sequential dependency even when longitudinal data is available. Sequence-aware deep generative models, where model input is a sequence of ordered and timestamped images, are still underexplored in the medical imaging domain that is featured by several unique challenges: 1) Sequences with various lengths; 2) Missing data or frame, and 3) High dimensionality. To this end, we propose a sequence-aware diffusion model (SADM) for the generation of longitudinal medical images. Recently, diffusion models have shown promising results on high-fidelity image generation. Our method extends this new technique by introducing a sequence-aware transformer as the conditional module in a diffusion model. The novel design enables learning longitudinal dependency even with missing data during training and allows autoregressive generation of a sequence of images during inference. Our extensive experiments on 3D longitudinal medical images demonstrate the effectiveness of SADM compared with baselines and alternative methods.
translated by 谷歌翻译
与CNN的分类,分割或对象检测相比,生成网络的目标和方法根本不同。最初,它们不是作为图像分析工具,而是生成自然看起来的图像。已经提出了对抗性训练范式来稳定生成方法,并已被证明是非常成功的 - 尽管绝不是第一次尝试。本章对生成对抗网络(GAN)的动机进行了基本介绍,并通​​过抽象基本任务和工作机制并得出了早期实用方法的困难来追溯其成功的道路。将显示进行更稳定的训练方法,也将显示出不良收敛及其原因的典型迹象。尽管本章侧重于用于图像生成和图像分析的gan,但对抗性训练范式本身并非特定于图像,并且在图像分析中也概括了任务。在将GAN与最近进入场景的进一步生成建模方法进行对比之前,将闻名图像语义分割和异常检测的架构示例。这将允许对限制的上下文化观点,但也可以对gans有好处。
translated by 谷歌翻译