近年来数据的快速增长导致了经常用于在现实世界中做出决定的复杂学习算法的发展。虽然算法的积极影响是巨大的,但需要减轻由训练样本或关于数据样本的隐含假设产生的任何偏差。当算法用于自动决策系统时,这种需求变得至关重要。已经提出了许多方法来通过检测和减轻优化阶段的偏差来进行学习算法。然而,由于缺乏通用的公平定义,这些算法优化了对公平性的特定解释,这使得它们有限地用于现实世界。此外,对所有算法共同的潜在假设是实现公平性和去除偏差的表观等价。换句话说,没有用户定义的标准,可以结合到用于产生公平算法的优化过程中。通过现有方法的这些缺点,我们提出了通过将用户约束纳入优化过程来产生公平算法的菲尔格氏术。此外,我们通过估计来自数据的最预测性功能来解释该过程。我们展示了我们使用不同公平标准对几个真实世界数据集的方法的功效。
translated by 谷歌翻译
分类,一种重大研究的数据驱动机器学习任务,驱动越来越多的预测系统,涉及批准的人类决策,如贷款批准和犯罪风险评估。然而,分类器经常展示歧视性行为,特别是当呈现有偏置数据时。因此,分类公平已经成为一个高优先级的研究区。数据管理研究显示与数据和算法公平有关的主题的增加和兴趣,包括公平分类的主题。公平分类的跨学科努力,具有最大存在的机器学习研究,导致大量的公平概念和尚未系统地评估和比较的广泛方法。在本文中,我们对13个公平分类方法和额外变种的广泛分析,超越,公平,公平,效率,可扩展性,对数据误差的鲁棒性,对潜在的ML模型,数据效率和使用各种指标的稳定性的敏感性和稳定性现实世界数据集。我们的分析突出了对不同指标的影响的新颖见解和高级方法特征对不同方面的性能方面。我们还讨论了选择适合不同实际设置的方法的一般原则,并确定以数据管理为中心的解决方案可能产生最大影响的区域。
translated by 谷歌翻译
自几十年前以来,已经证明了机器学习评估贷款申请人信誉的实用性。但是,自动决策可能会导致对群体或个人的不同治疗方法,可能导致歧视。本文基准了12种最大的偏见缓解方法,讨论其绩效,该绩效基于5个不同的公平指标,获得的准确性以及为金融机构提供的潜在利润。我们的发现表明,在确保准确性和利润的同时,实现公平性方面的困难。此外,它突出了一些表现最好和最差的人,并有助于弥合实验机学习及其工业应用之间的差距。
translated by 谷歌翻译
本文考虑了在分解正常形式(DNF,ANDS的DNF,ANDS,相当于判定规则集)或联合正常形式(CNF,ORS)作为分类模型的联合正常形式的学习。为规则简化,将整数程序配制成最佳贸易分类准确性。我们还考虑公平设定,并扩大制定,以包括对两种不同分类措施的明确限制:机会平等和均等的赔率。列生成(CG)用于有效地搜索候选条款(连词或剖钉)的指数数量,而不需要启发式规则挖掘。此方法还会绑定所选规则集之间的间隙和培训数据上的最佳规则集。要处理大型数据集,我们建议使用随机化的近似CG算法。与三个最近提出的替代方案相比,CG算法主导了16个数据集中的8个中的精度简单折衷。当最大限度地提高精度时,CG与为此目的设计的规则学习者具有竞争力,有时发现明显更简单的解决方案,这些解决方案不太准确。与其他公平和可解释的分类器相比,我们的方法能够找到符合较严格的公平概念的规则集,以适度的折衷准确性。
translated by 谷歌翻译
It is of critical importance to be aware of the historical discrimination embedded in the data and to consider a fairness measure to reduce bias throughout the predictive modeling pipeline. Given various notions of fairness defined in the literature, investigating the correlation and interaction among metrics is vital for addressing unfairness. Practitioners and data scientists should be able to comprehend each metric and examine their impact on one another given the context, use case, and regulations. Exploring the combinatorial space of different metrics for such examination is burdensome. To alleviate the burden of selecting fairness notions for consideration, we propose a framework that estimates the correlation among fairness notions. Our framework consequently identifies a set of diverse and semantically distinct metrics as representative for a given context. We propose a Monte-Carlo sampling technique for computing the correlations between fairness metrics by indirect and efficient perturbation in the model space. Using the estimated correlations, we then find a subset of representative metrics. The paper proposes a generic method that can be generalized to any arbitrary set of fairness metrics. We showcase the validity of the proposal using comprehensive experiments on real-world benchmark datasets.
translated by 谷歌翻译
Algorithmic decision making systems are ubiquitous across a wide variety of online as well as offline services. These systems rely on complex learning methods and vast amounts of data to optimize the service functionality, satisfaction of the end user and profitability. However, there is a growing concern that these automated decisions can lead, even in the absence of intent, to a lack of fairness, i.e., their outcomes can disproportionately hurt (or, benefit) particular groups of people sharing one or more sensitive attributes (e.g., race, sex). In this paper, we introduce a flexible mechanism to design fair classifiers by leveraging a novel intuitive measure of decision boundary (un)fairness. We instantiate this mechanism with two well-known classifiers, logistic regression and support vector machines, and show on real-world data that our mechanism allows for a fine-grained control on the degree of fairness, often at a small cost in terms of accuracy. A Python implementation of our mechanism is available at fate-computing.mpi-sws.org
translated by 谷歌翻译
业务分析(BA)的广泛采用带来了财务收益和提高效率。但是,当BA以公正的影响为决定时,这些进步同时引起了人们对法律和道德挑战的不断增加。作为对这些关注的回应,对算法公平性的新兴研究涉及算法输出,这些算法可能会导致不同的结果或其他形式的对人群亚组的不公正现象,尤其是那些在历史上被边缘化的人。公平性是根据法律合规,社会责任和效用是相关的;如果不充分和系统地解决,不公平的BA系统可能会导致社会危害,也可能威胁到组织自己的生存,其竞争力和整体绩效。本文提供了有关算法公平的前瞻性,注重BA的评论。我们首先回顾有关偏见来源和措施的最新研究以及偏见缓解算法。然后,我们对公用事业关系的详细讨论进行了详细的讨论,强调经常假设这两种构造之间经常是错误的或短视的。最后,我们通过确定企业学者解决有效和负责任的BA的关键的有影响力的公开挑战的机会来绘制前进的道路。
translated by 谷歌翻译
作为一种预测模型的评分系统具有可解释性和透明度的显着优势,并有助于快速决策。因此,评分系统已广泛用于各种行业,如医疗保健和刑事司法。然而,这些模型中的公平问题长期以来一直受到批评,并且使用大数据和机器学习算法在评分系统的构建中提高了这个问题。在本文中,我们提出了一般框架来创建公平知识,数据驱动评分系统。首先,我们开发一个社会福利功能,融入了效率和群体公平。然后,我们将社会福利最大化问题转换为机器学习中的风险最小化任务,并在混合整数编程的帮助下导出了公平感知评分系统。最后,导出了几种理论界限用于提供参数选择建议。我们拟议的框架提供了适当的解决方案,以解决进程中的分组公平问题。它使政策制定者能够设置和定制其所需的公平要求以及其他特定于应用程序的约束。我们用几个经验数据集测试所提出的算法。实验证据支持拟议的评分制度在实现利益攸关方的最佳福利以及平衡可解释性,公平性和效率的需求方面的有效性。
translated by 谷歌翻译
尽管机器学习模式的发展迅速和巨大成功,但广泛的研究暴露了继承潜在歧视和培训数据的社会偏见的缺点。这种现象阻碍了他们在高利益应用上采用。因此,已经采取了许多努力开发公平机器学习模型。其中大多数要求在培训期间提供敏感属性以学习公平的模型。然而,在许多现实世界应用中,由于隐私或法律问题,获得敏感的属性通常是不可行的,这挑战了现有的公平策略。虽然每个数据样本的敏感属性未知,但我们观察到训练数据中通常存在一些与敏感属性高度相关的非敏感功能,这可以用于缓解偏差。因此,在本文中,我们研究了一种探索与学习公平和准确分类器的敏感属性高度相关的特征的新问题。理论上我们通过最小化这些相关特征与模型预测之间的相关性,我们可以学习一个公平的分类器。基于这种动机,我们提出了一种新颖的框架,该框架同时使用这些相关的特征来准确预测和执行公平性。此外,该模型可以动态调整每个相关功能的正则化权重,以平衡其对模型分类和公平性的贡献。现实世界数据集的实验结果证明了拟议模型用于学习公平模型的效力,具有高分类准确性。
translated by 谷歌翻译
近年来,解决机器学习公平性(ML)和自动决策的问题引起了处理人工智能的科学社区的大量关注。已经提出了ML中的公平定义的一种不同的定义,认为不同概念是影响人口中个人的“公平决定”的不同概念。这些概念之间的精确差异,含义和“正交性”尚未在文献中完全分析。在这项工作中,我们试图在这个解释中汲取一些订单。
translated by 谷歌翻译
为了减轻模型中不希望的偏差的影响,几种方法建议预先处理输入数据集,以通过防止敏感属性的推断来减少歧视风险。不幸的是,这些预处理方法中的大多数导致一代新分布与原始分布有很大不同,因此通常导致不切实际的数据。作为副作用,这种新的数据分布意味着需要重新训练现有模型才能做出准确的预测。为了解决这个问题,我们提出了一种新颖的预处理方法,我们将根据保护组的分布转换为所选目标一个,并具有附加的隐私约束,其目的是防止敏感敏感的推断属性。更确切地说,我们利用Wasserstein Gan和Attgan框架的最新作品来实现数据点的最佳运输以及强制保护属性推断的歧视器。我们提出的方法可以保留数据的可解释性,并且可以在不定义敏感组的情况下使用。此外,我们的方法可以专门建模现有的最新方法,从而提出对这些方法的统一观点。最后,关于真实和合成数据集的一些实验表明,我们的方法能够隐藏敏感属性,同时限制数据的变形并改善了后续数据分析任务的公平性。
translated by 谷歌翻译
应用标准机器学习方法可以在不同的人口组中产生不等的结果。当在现实世界中使用时,这些不公平可能会产生负面影响。这激发了近年来通过机器学习模型公平分类的各种方法的发展。在本文中,我们考虑修改黑箱机器学习分类器的预测的问题,以便在多种多组设置中实现公平性。为实现这一目标,我们在Hardt等人中扩展了“后处理”方法。 2016年,侧重于二进制分类的公平,以实现公平的多种式分类。我们探讨我们的方法通过系统合成实验产生公平和准确的预测,并在几个公开的现实世界应用数据集中评估歧视 - 公平权衡。我们发现整体而言,当数据集中的个体的数量相对于类和受保护组的数量很高时,我们的方法可以精确地产生轻微的滴度并强制执行公平性。
translated by 谷歌翻译
机器学习模型在高赌注应用中变得普遍存在。尽管在绩效方面有明显的效益,但该模型可以表现出对少数民族群体的偏见,并导致决策过程中的公平问题,导致对个人和社会的严重负面影响。近年来,已经开发了各种技术来减轻机器学习模型的偏差。其中,加工方法已经增加了社区的关注,在模型设计期间直接考虑公平,以诱导本质上公平的模型,从根本上减轻了产出和陈述中的公平问题。在本调查中,我们审查了加工偏置减缓技术的当前进展。基于在模型中实现公平的地方,我们将它们分类为明确和隐性的方法,前者直接在培训目标中纳入公平度量,后者重点介绍精炼潜在代表学习。最后,我们在讨论该社区中的研究挑战来讨论调查,以激励未来的探索。
translated by 谷歌翻译
Motivated by the growing importance of reducing unfairness in ML predictions, Fair-ML researchers have presented an extensive suite of algorithmic 'fairness-enhancing' remedies. Most existing algorithms, however, are agnostic to the sources of the observed unfairness. As a result, the literature currently lacks guiding frameworks to specify conditions under which each algorithmic intervention can potentially alleviate the underpinning cause of unfairness. To close this gap, we scrutinize the underlying biases (e.g., in the training data or design choices) that cause observational unfairness. We present the conceptual idea and a first implementation of a bias-injection sandbox tool to investigate fairness consequences of various biases and assess the effectiveness of algorithmic remedies in the presence of specific types of bias. We call this process the bias(stress)-testing of algorithmic interventions. Unlike existing toolkits, ours provides a controlled environment to counterfactually inject biases in the ML pipeline. This stylized setup offers the distinct capability of testing fairness interventions beyond observational data and against an unbiased benchmark. In particular, we can test whether a given remedy can alleviate the injected bias by comparing the predictions resulting after the intervention in the biased setting with true labels in the unbiased regime-that is, before any bias injection. We illustrate the utility of our toolkit via a proof-of-concept case study on synthetic data. Our empirical analysis showcases the type of insights that can be obtained through our simulations.
translated by 谷歌翻译
基于机器学习的决策支持系统的利用率增加强调了导致所有利益相关者准确和公平的预测的必要性。在这项工作中,我们提出了一种新的方法,可以在训练期间提高神经网络模型的公平性。我们介绍了一系列公平性,增强了我们与传统的二进制交叉熵基准损耗一起使用的正规化组件。这些损失函数基于偏置奇偶校验分数(BPS),一个分数有助于使用单个数字量化模型中的偏差。在目前的工作中,我们调查这些正则化组件对偏见的行为和效果。我们在累犯预测任务以及基于人口普查的成人收入数据集的上下文中部署它们。结果表明,对于公平损失功能的良好选择,我们可以减少训练有素的模型的偏置,而不会降低精度,即使在不平衡数据集中也是如此。
translated by 谷歌翻译
What does it mean for an algorithm to be biased? In U.S. law, unintentional bias is encoded via disparate impact, which occurs when a selection process has widely different outcomes for different groups, even as it appears to be neutral. This legal determination hinges on a definition of a protected class (ethnicity, gender) and an explicit description of the process.When computers are involved, determining disparate impact (and hence bias) is harder. It might not be possible to disclose the process. In addition, even if the process is open, it might be hard to elucidate in a legal setting how the algorithm makes its decisions. Instead of requiring access to the process, we propose making inferences based on the data it uses.We present four contributions. First, we link disparate impact to a measure of classification accuracy that while known, has received relatively little attention. Second, we propose a test for disparate impact based on how well the protected class can be predicted from the other attributes. Third, we describe methods by which data might be made unbiased. Finally, we present empirical evidence supporting the effectiveness of our test for disparate impact and our approach for both masking bias and preserving relevant information in the data. Interestingly, our approach resembles some actual selection practices that have recently received legal scrutiny.
translated by 谷歌翻译
在高风险领域(人们的生计受到影响)中,机器学习的日益增长的使用迫切需要解释和公平的算法。在这些设置中,此类算法的准确性也至关重要。考虑到这些需求,我们提出了一个混合整数优化(MIO)框架,用于学习具有固定深度的最佳分类树,可以通过任意域特定的公平约束来方便地增强。我们基于在流行数据集上建造公平树木的最先进方法基准测试;鉴于固定的歧视阈值,我们的方法平均将样本外(OOS)的精度提高了2.3个百分点,并在88.9%的实验上获得了更高的OOS精度。我们还将各种算法公平概念纳入我们的方法中,展示其多功能建模能力,使决策者可以微调准确性和公平性之间的权衡。
translated by 谷歌翻译
机器学习(ML)在渲染影响社会各个群体的决策中起着越来越重要的作用。 ML模型为刑事司法的决定,银行业中的信贷延长以及公司的招聘做法提供了信息。这提出了模型公平性的要求,这表明自动化的决策对于受保护特征(例如,性别,种族或年龄)通常是公平的,这些特征通常在数据中代表性不足。我们假设这个代表性不足的问题是数据学习不平衡问题的必然性。此类不平衡通常反映在两个类别和受保护的功能中。例如,一个班级(那些获得信用的班级)对于另一个班级(未获得信用的人)可能会过分代表,而特定组(女性)(女性)的代表性可能与另一组(男性)有关。相对于受保护组的算法公平性的关键要素是同时减少了基础培训数据中的类和受保护的群体失衡,这促进了模型准确性和公平性的提高。我们通过展示这些领域中的关键概念如何重叠和相互补充,讨论弥合失衡学习和群体公平的重要性;并提出了一种新颖的过采样算法,即公平的过采样,该算法既解决偏斜的类别分布和受保护的特征。我们的方法:(i)可以用作标准ML算法的有效预处理算法,以共同解决不平衡和群体权益; (ii)可以与公平感知的学习算法结合使用,以提高其对不同水平不平衡水平的稳健性。此外,我们迈出了一步,将公平和不平衡学习之间的差距与新的公平实用程序之间的差距弥合,从而将平衡的准确性与公平性结合在一起。
translated by 谷歌翻译
随着机器学习在高风险决策问题中的不断应用,对某些社会群体的人们的潜在算法偏见对个人和我们的整个社会造成了负面影响。在现实世界中,许多此类问题涉及积极和未标记的数据,例如医学诊断,刑事风险评估和推荐系统。例如,在医学诊断中,仅记录诊断性疾病(阳性),而其他疾病则不会(未标记)。尽管在(半)监督和无监督的环境中进行了大量的现有工作,但公平问题在上述正面和未标记的学习(PUL)上下文中基本上却大大不足。在本文中,为了减轻这种张力,我们提出了一种名为Fairpul的公平意识的PUL方法。特别是,对于来自两个人群的个人的二元分类,我们旨在在两个人群中达到相似的真实正利率和假期的误报。基于对PUL的最佳公平分类器的分析,我们设计了模型不合时宜的后处理框架,利用了积极的示例和未标记的示例。从分类错误和公平度量标准方面,我们的框架在统计上是一致的。关于合成和现实世界数据集的实验表明,我们的框架在PUL和公平分类方面的表现都优于最先进。
translated by 谷歌翻译
随着算法治理的快速发展,公平性已成为机器学习模型的强制性属性,以抑制无意的歧视。在本文中,我们着重于实现公平性的预处理方面,并提出了一种数据重新拨打的方法,该方法仅在培训阶段调整样本的重量。与通常为每个(子)组分配均匀权重的大多数以前的重新校正方法不同,我们对每个训练样本在与公平相关的数量和预测效用方面的影响进行颗粒片,并根据在从影响下的影响下对单个权重进行计算。公平和效用。实验结果表明,以前的方法以不可忽略的实用性成本达到公平性,而为了取得重大优势,我们的方法可以从经验上释放权衡并获得无需成本的公平就可以平等机会。与多个现实世界表格数据集中的基线方法相比,我们通过香草分类器和标准培训过程证明了通过香草分类器和标准培训过程的公平性。可在https://github.com/brandeis-machine-learning/influence-fairness上获得代码。
translated by 谷歌翻译