随着算法治理的快速发展,公平性已成为机器学习模型的强制性属性,以抑制无意的歧视。在本文中,我们着重于实现公平性的预处理方面,并提出了一种数据重新拨打的方法,该方法仅在培训阶段调整样本的重量。与通常为每个(子)组分配均匀权重的大多数以前的重新校正方法不同,我们对每个训练样本在与公平相关的数量和预测效用方面的影响进行颗粒片,并根据在从影响下的影响下对单个权重进行计算。公平和效用。实验结果表明,以前的方法以不可忽略的实用性成本达到公平性,而为了取得重大优势,我们的方法可以从经验上释放权衡并获得无需成本的公平就可以平等机会。与多个现实世界表格数据集中的基线方法相比,我们通过香草分类器和标准培训过程证明了通过香草分类器和标准培训过程的公平性。可在https://github.com/brandeis-machine-learning/influence-fairness上获得代码。
translated by 谷歌翻译
在高赌注域中的机器学习工具的实际应用通常被调节为公平,因此预测目标应该满足相对于受保护属性的奇偶校验的一些定量概念。然而,公平性和准确性之间的确切权衡并不完全清楚,即使是对分类问题的基本范式也是如此。在本文中,我们通过在任何公平分类器的群体误差之和中提供较低的界限,在分类设置中表征统计奇偶校验和准确性之间的固有权衡。我们不可能的定理可以被解释为公平的某种不确定性原则:如果基本率不同,那么符合统计奇偶校验的任何公平分类器都必须在至少一个组中产生很大的错误。我们进一步扩展了这一结果,以便在学习公平陈述的角度下给出任何(大约)公平分类者的联合误差的下限。为了表明我们的下限是紧张的,假设Oracle访问贝叶斯(潜在不公平)分类器,我们还构造了一种返回一个随机分类器的算法,这是最佳和公平的。有趣的是,当受保护的属性可以采用超过两个值时,这个下限的扩展不承认分析解决方案。然而,在这种情况下,我们表明,通过解决线性程序,我们可以通过解决我们作为电视 - 重心问题的术语,电视距离的重心问题来有效地计算下限。在上面,我们证明,如果集团明智的贝叶斯最佳分类器是关闭的,那么学习公平的表示导致公平的替代概念,称为准确性奇偶校验,这使得错误率在组之间关闭。最后,我们还在现实世界数据集上进行实验,以确认我们的理论发现。
translated by 谷歌翻译
尽管大规模的经验风险最小化(ERM)在各种机器学习任务中取得了高精度,但公平的ERM受到公平限制与随机优化的不兼容的阻碍。我们考虑具有离散敏感属性以及可能需要随机求解器的可能性大型模型和数据集的公平分类问题。现有的内部处理公平算法在大规模设置中要么是不切实际的,因为它们需要在每次迭代时进行大量数据,要么不保证它们会收敛。在本文中,我们开发了第一个具有保证收敛性的随机内处理公平算法。对于人口统计学,均衡的赔率和公平的机会均等的概念,我们提供了算法的略有变化,称为Fermi,并证明这些变化中的每一个都以任何批次大小收敛于随机优化。从经验上讲,我们表明Fermi适合具有多个(非二进制)敏感属性和非二进制目标的随机求解器,即使Minibatch大小也很小,也可以很好地表现。广泛的实验表明,与最先进的基准相比,FERMI实现了所有经过测试的设置之间的公平违规和测试准确性之间最有利的权衡,该基准是人口统计学奇偶校验,均衡的赔率,均等机会,均等机会。这些好处在小批量的大小和非二元分类具有大量敏感属性的情况下尤其重要,这使得费米成为大规模问题的实用公平算法。
translated by 谷歌翻译
文献中已经提出了各种公平限制,以减轻小组级统计偏见。它们的影响已在很大程度上评估了与一组敏感属性(例如种族或性别)相对应的不同人群。尽管如此,社区尚未观察到足够的探索,以实例限制公平的限制。基于影响功能的概念,该措施表征了训练示例对目标模型及其预测性能的影响,这项工作研究了施加公平性约束时训练示例的影响。我们发现,在某些假设下,关于公平限制的影响功能可以分解为训练示例的内核组合。提出的公平影响功能的一种有希望的应用是确定可疑的训练示例,这些训练示例可能通过对其影响得分进行排名来导致模型歧视。我们通过广泛的实验证明,对一部分重量数据示例进行培训会导致违反公平性的侵犯,而准确性的权衡。
translated by 谷歌翻译
分类,一种重大研究的数据驱动机器学习任务,驱动越来越多的预测系统,涉及批准的人类决策,如贷款批准和犯罪风险评估。然而,分类器经常展示歧视性行为,特别是当呈现有偏置数据时。因此,分类公平已经成为一个高优先级的研究区。数据管理研究显示与数据和算法公平有关的主题的增加和兴趣,包括公平分类的主题。公平分类的跨学科努力,具有最大存在的机器学习研究,导致大量的公平概念和尚未系统地评估和比较的广泛方法。在本文中,我们对13个公平分类方法和额外变种的广泛分析,超越,公平,公平,效率,可扩展性,对数据误差的鲁棒性,对潜在的ML模型,数据效率和使用各种指标的稳定性的敏感性和稳定性现实世界数据集。我们的分析突出了对不同指标的影响的新颖见解和高级方法特征对不同方面的性能方面。我们还讨论了选择适合不同实际设置的方法的一般原则,并确定以数据管理为中心的解决方案可能产生最大影响的区域。
translated by 谷歌翻译
由于其在不同领域的应用继续扩大和多样化,因此机器学习的公平正在越来越越来越受到关注。为了减轻不同人口组之间的区分模型行为,我们介绍了一种新的后处理方法来通过组感知阈值适应优化多个公平性约束。我们建议通过优化从分类模型输出的概率分布估计的混淆矩阵来学习每个人口统计组的自适应分类阈值。由于我们仅需要模型输出的估计概率分布而不是分类模型结构,我们的后处理模型可以应用于各种分类模型,并以模型 - 不可知方式提高公平性并确保隐私。这甚至允许我们在后处理现有的公平方法,以进一步提高准确性和公平性之间的权衡。此外,我们的模型具有低计算成本。我们为我们的优化算法的收敛性提供严格的理论分析和我们方法的准确性和公平性之间的权衡。我们的方法理论上使得能够在与现有方法相同的情况下的近最优性的更好的上限。实验结果表明,我们的方法优于最先进的方法,并获得最接近理论精度公平折衷边界的结果。
translated by 谷歌翻译
In consequential decision-making applications, mitigating unwanted biases in machine learning models that yield systematic disadvantage to members of groups delineated by sensitive attributes such as race and gender is one key intervention to strive for equity. Focusing on demographic parity and equality of opportunity, in this paper we propose an algorithm that improves the fairness of a pre-trained classifier by simply dropping carefully selected training data points. We select instances based on their influence on the fairness metric of interest, computed using an infinitesimal jackknife-based approach. The dropping of training points is done in principle, but in practice does not require the model to be refit. Crucially, we find that such an intervention does not substantially reduce the predictive performance of the model but drastically improves the fairness metric. Through careful experiments, we evaluate the effectiveness of the proposed approach on diverse tasks and find that it consistently improves upon existing alternatives.
translated by 谷歌翻译
Fairness is an essential factor for machine learning systems deployed in high-stake applications. Among all fairness notions, individual fairness, following a consensus that `similar individuals should be treated similarly,' is a vital notion to guarantee fair treatment for individual cases. Previous methods typically characterize individual fairness as a prediction-invariant problem when perturbing sensitive attributes, and solve it by adopting the Distributionally Robust Optimization (DRO) paradigm. However, adversarial perturbations along a direction covering sensitive information do not consider the inherent feature correlations or innate data constraints, and thus mislead the model to optimize at off-manifold and unrealistic samples. In light of this, we propose a method to learn and generate antidote data that approximately follows the data distribution to remedy individual unfairness. These on-manifold antidote data can be used through a generic optimization procedure with original training data, resulting in a pure pre-processing approach to individual unfairness, or can also fit well with the in-processing DRO paradigm. Through extensive experiments, we demonstrate our antidote data resists individual unfairness at a minimal or zero cost to the model's predictive utility.
translated by 谷歌翻译
A recent explosion of research focuses on developing methods and tools for building fair predictive models. However, most of this work relies on the assumption that the training and testing data are representative of the target population on which the model will be deployed. However, real-world training data often suffer from selection bias and are not representative of the target population for many reasons, including the cost and feasibility of collecting and labeling data, historical discrimination, and individual biases. In this paper, we introduce a new framework for certifying and ensuring the fairness of predictive models trained on biased data. We take inspiration from query answering over incomplete and inconsistent databases to present and formalize the problem of consistent range approximation (CRA) of answers to queries about aggregate information for the target population. We aim to leverage background knowledge about the data collection process, biased data, and limited or no auxiliary data sources to compute a range of answers for aggregate queries over the target population that are consistent with available information. We then develop methods that use CRA of such aggregate queries to build predictive models that are certifiably fair on the target population even when no external information about that population is available during training. We evaluate our methods on real data and demonstrate improvements over state of the art. Significantly, we show that enforcing fairness using our methods can lead to predictive models that are not only fair, but more accurate on the target population.
translated by 谷歌翻译
作为一种预测模型的评分系统具有可解释性和透明度的显着优势,并有助于快速决策。因此,评分系统已广泛用于各种行业,如医疗保健和刑事司法。然而,这些模型中的公平问题长期以来一直受到批评,并且使用大数据和机器学习算法在评分系统的构建中提高了这个问题。在本文中,我们提出了一般框架来创建公平知识,数据驱动评分系统。首先,我们开发一个社会福利功能,融入了效率和群体公平。然后,我们将社会福利最大化问题转换为机器学习中的风险最小化任务,并在混合整数编程的帮助下导出了公平感知评分系统。最后,导出了几种理论界限用于提供参数选择建议。我们拟议的框架提供了适当的解决方案,以解决进程中的分组公平问题。它使政策制定者能够设置和定制其所需的公平要求以及其他特定于应用程序的约束。我们用几个经验数据集测试所提出的算法。实验证据支持拟议的评分制度在实现利益攸关方的最佳福利以及平衡可解释性,公平性和效率的需求方面的有效性。
translated by 谷歌翻译
自几十年前以来,已经证明了机器学习评估贷款申请人信誉的实用性。但是,自动决策可能会导致对群体或个人的不同治疗方法,可能导致歧视。本文基准了12种最大的偏见缓解方法,讨论其绩效,该绩效基于5个不同的公平指标,获得的准确性以及为金融机构提供的潜在利润。我们的发现表明,在确保准确性和利润的同时,实现公平性方面的困难。此外,它突出了一些表现最好和最差的人,并有助于弥合实验机学习及其工业应用之间的差距。
translated by 谷歌翻译
随着机器学习变得普遍,减轻培训数据中存在的任何不公平性变得至关重要。在公平的各种概念中,本文的重点是众所周知的个人公平,该公平规定应该对类似的人进行类似的对待。虽然在训练模型(对处理)时可以提高个人公平性,但我们认为在模型培训(预处理)之前修复数据是一个更基本的解决方案。特别是,我们表明标签翻转是改善个人公平性的有效预处理技术。我们的系统IFLIPPER解决了限制了个人公平性违规行为的最小翻转标签的优化问题,当培训数据中的两个类似示例具有不同的标签时,发生违规情况。我们首先证明问题是NP-HARD。然后,我们提出了一种近似的线性编程算法,并提供理论保证其结果与标签翻转数量有关的结果与最佳解决方案有多近。我们还提出了使线性编程解决方案更加最佳的技术,而不会超过违规限制。实际数据集上的实验表明,在看不见的测试集的个人公平和准确性方面,IFLIPPER显着优于其他预处理基线。此外,IFLIPPER可以与处理中的技术结合使用,以获得更好的结果。
translated by 谷歌翻译
We propose a criterion for discrimination against a specified sensitive attribute in supervised learning, where the goal is to predict some target based on available features. Assuming data about the predictor, target, and membership in the protected group are available, we show how to optimally adjust any learned predictor so as to remove discrimination according to our definition. Our framework also improves incentives by shifting the cost of poor classification from disadvantaged groups to the decision maker, who can respond by improving the classification accuracy.In line with other studies, our notion is oblivious: it depends only on the joint statistics of the predictor, the target and the protected attribute, but not on interpretation of individual features. We study the inherent limits of defining and identifying biases based on such oblivious measures, outlining what can and cannot be inferred from different oblivious tests.We illustrate our notion using a case study of FICO credit scores.
translated by 谷歌翻译
尽管机器学习模式的发展迅速和巨大成功,但广泛的研究暴露了继承潜在歧视和培训数据的社会偏见的缺点。这种现象阻碍了他们在高利益应用上采用。因此,已经采取了许多努力开发公平机器学习模型。其中大多数要求在培训期间提供敏感属性以学习公平的模型。然而,在许多现实世界应用中,由于隐私或法律问题,获得敏感的属性通常是不可行的,这挑战了现有的公平策略。虽然每个数据样本的敏感属性未知,但我们观察到训练数据中通常存在一些与敏感属性高度相关的非敏感功能,这可以用于缓解偏差。因此,在本文中,我们研究了一种探索与学习公平和准确分类器的敏感属性高度相关的特征的新问题。理论上我们通过最小化这些相关特征与模型预测之间的相关性,我们可以学习一个公平的分类器。基于这种动机,我们提出了一种新颖的框架,该框架同时使用这些相关的特征来准确预测和执行公平性。此外,该模型可以动态调整每个相关功能的正则化权重,以平衡其对模型分类和公平性的贡献。现实世界数据集的实验结果证明了拟议模型用于学习公平模型的效力,具有高分类准确性。
translated by 谷歌翻译
We present a systematic approach for achieving fairness in a binary classification setting. While we focus on two well-known quantitative definitions of fairness, our approach encompasses many other previously studied definitions as special cases. The key idea is to reduce fair classification to a sequence of cost-sensitive classification problems, whose solutions yield a randomized classifier with the lowest (empirical) error subject to the desired constraints. We introduce two reductions that work for any representation of the cost-sensitive classifier and compare favorably to prior baselines on a variety of data sets, while overcoming several of their disadvantages.
translated by 谷歌翻译
随着机器学习在高风险决策问题中的不断应用,对某些社会群体的人们的潜在算法偏见对个人和我们的整个社会造成了负面影响。在现实世界中,许多此类问题涉及积极和未标记的数据,例如医学诊断,刑事风险评估和推荐系统。例如,在医学诊断中,仅记录诊断性疾病(阳性),而其他疾病则不会(未标记)。尽管在(半)监督和无监督的环境中进行了大量的现有工作,但公平问题在上述正面和未标记的学习(PUL)上下文中基本上却大大不足。在本文中,为了减轻这种张力,我们提出了一种名为Fairpul的公平意识的PUL方法。特别是,对于来自两个人群的个人的二元分类,我们旨在在两个人群中达到相似的真实正利率和假期的误报。基于对PUL的最佳公平分类器的分析,我们设计了模型不合时宜的后处理框架,利用了积极的示例和未标记的示例。从分类错误和公平度量标准方面,我们的框架在统计上是一致的。关于合成和现实世界数据集的实验表明,我们的框架在PUL和公平分类方面的表现都优于最先进。
translated by 谷歌翻译
为了减轻模型中不希望的偏差的影响,几种方法建议预先处理输入数据集,以通过防止敏感属性的推断来减少歧视风险。不幸的是,这些预处理方法中的大多数导致一代新分布与原始分布有很大不同,因此通常导致不切实际的数据。作为副作用,这种新的数据分布意味着需要重新训练现有模型才能做出准确的预测。为了解决这个问题,我们提出了一种新颖的预处理方法,我们将根据保护组的分布转换为所选目标一个,并具有附加的隐私约束,其目的是防止敏感敏感的推断属性。更确切地说,我们利用Wasserstein Gan和Attgan框架的最新作品来实现数据点的最佳运输以及强制保护属性推断的歧视器。我们提出的方法可以保留数据的可解释性,并且可以在不定义敏感组的情况下使用。此外,我们的方法可以专门建模现有的最新方法,从而提出对这些方法的统一观点。最后,关于真实和合成数据集的一些实验表明,我们的方法能够隐藏敏感属性,同时限制数据的变形并改善了后续数据分析任务的公平性。
translated by 谷歌翻译
近年来数据的快速增长导致了经常用于在现实世界中做出决定的复杂学习算法的发展。虽然算法的积极影响是巨大的,但需要减轻由训练样本或关于数据样本的隐含假设产生的任何偏差。当算法用于自动决策系统时,这种需求变得至关重要。已经提出了许多方法来通过检测和减轻优化阶段的偏差来进行学习算法。然而,由于缺乏通用的公平定义,这些算法优化了对公平性的特定解释,这使得它们有限地用于现实世界。此外,对所有算法共同的潜在假设是实现公平性和去除偏差的表观等价。换句话说,没有用户定义的标准,可以结合到用于产生公平算法的优化过程中。通过现有方法的这些缺点,我们提出了通过将用户约束纳入优化过程来产生公平算法的菲尔格氏术。此外,我们通过估计来自数据的最预测性功能来解释该过程。我们展示了我们使用不同公平标准对几个真实世界数据集的方法的功效。
translated by 谷歌翻译
本文考虑了在分解正常形式(DNF,ANDS的DNF,ANDS,相当于判定规则集)或联合正常形式(CNF,ORS)作为分类模型的联合正常形式的学习。为规则简化,将整数程序配制成最佳贸易分类准确性。我们还考虑公平设定,并扩大制定,以包括对两种不同分类措施的明确限制:机会平等和均等的赔率。列生成(CG)用于有效地搜索候选条款(连词或剖钉)的指数数量,而不需要启发式规则挖掘。此方法还会绑定所选规则集之间的间隙和培训数据上的最佳规则集。要处理大型数据集,我们建议使用随机化的近似CG算法。与三个最近提出的替代方案相比,CG算法主导了16个数据集中的8个中的精度简单折衷。当最大限度地提高精度时,CG与为此目的设计的规则学习者具有竞争力,有时发现明显更简单的解决方案,这些解决方案不太准确。与其他公平和可解释的分类器相比,我们的方法能够找到符合较严格的公平概念的规则集,以适度的折衷准确性。
translated by 谷歌翻译
我们考虑为多类分类任务生产公平概率分类器的问题。我们以“投射”预先培训(且可能不公平的)分类器在满足目标群体对要求的一组模型上的“投影”来提出这个问题。新的投影模型是通过通过乘法因子后处理预训练的分类器的输出来给出的。我们提供了一种可行的迭代算法,用于计算投影分类器并得出样本复杂性和收敛保证。与最先进的基准测试的全面数值比较表明,我们的方法在准确性权衡曲线方面保持了竞争性能,同时在大型数据集中达到了有利的运行时。我们还在具有多个类别,多个相互保护组和超过1M样本的开放数据集上评估了我们的方法。
translated by 谷歌翻译