神经网络容易受到对抗性攻击的影响:为其输入添加良好的难以察觉的扰动可以修改它们的输出。对抗性培训是针对这种攻击训练强大模型的最有效的方法之一。然而,它比Vanilla训练的神经网络训练慢得多,因为它需要在每次迭代时构建整个训练数据的对抗性示例,这阻碍了其有效性。最近,提出了快速的对抗培训,可以有效地获得强大的模型。然而,其成功背后的原因尚未完全理解,更重要的是,它只能为$ \ ell_ \ infty $ -bounded攻击培训强大的模型,因为它在训练期间使用FGSM。在本文中,通过利用Coreset选择理论,我们展示了如何选择小型培训数据的子集,以减少强大培训的时间复杂性提供更原则的方法。与现有方法不同,我们的方法可以适应各种各样的培训目标,包括交易,$ \ ell_p $ -pgd和感知对抗培训。我们的实验结果表明,我们的方法将对抗性训练速度升高2-3次,同时经历清洁和稳健的准确性的少量减少。
translated by 谷歌翻译
神经网络容易受到对抗性攻击的攻击:在其输入中添加精心设计,不可察觉的扰动可以改变其输出。对抗训练是针对此类攻击的训练强大模型的最有效方法之一。不幸的是,这种方法比神经网络的香草培训要慢得多,因为它需要在每次迭代时为整个培训数据构建对抗性示例。通过利用核心选择理论,我们展示了如何选择一小部分训练数据提供了一种原则性的方法来降低健壮训练的时间复杂性。为此,我们首先为对抗核心选择提供收敛保证。特别是,我们表明收敛界限直接与我们的核心在整个训练数据中计算出的梯度的距离如何。在我们的理论分析的激励下,我们建议使用此梯度近似误差作为对抗核心选择目标,以有效地减少训练集大小。建造后,我们在培训数据的这一子集上进行对抗训练。与现有方法不同,我们的方法可以适应各种培训目标,包括交易,$ \ ell_p $ -pgd和感知性对手培训。我们进行了广泛的实验,以证明我们的进近可以使对抗性训练加快2-3次,同时在清洁和稳健的精度中略有降解。
translated by 谷歌翻译
Adversarial training, in which a network is trained on adversarial examples, is one of the few defenses against adversarial attacks that withstands strong attacks. Unfortunately, the high cost of generating strong adversarial examples makes standard adversarial training impractical on large-scale problems like ImageNet. We present an algorithm that eliminates the overhead cost of generating adversarial examples by recycling the gradient information computed when updating model parameters.Our "free" adversarial training algorithm achieves comparable robustness to PGD adversarial training on the CIFAR-10 and CIFAR-100 datasets at negligible additional cost compared to natural training, and can be 7 to 30 times faster than other strong adversarial training methods. Using a single workstation with 4 P100 GPUs and 2 days of runtime, we can train a robust model for the large-scale ImageNet classification task that maintains 40% accuracy against PGD attacks. The code is available at https://github.com/ashafahi/free_adv_train.
translated by 谷歌翻译
对抗性的鲁棒性已经成为深度学习的核心目标,无论是在理论和实践中。然而,成功的方法来改善对抗的鲁棒性(如逆势训练)在不受干扰的数据上大大伤害了泛化性能。这可能会对对抗性鲁棒性如何影响现实世界系统的影响(即,如果它可以提高未受干扰的数据的准确性),许多人可能选择放弃鲁棒性)。我们提出内插对抗培训,该培训最近雇用了在对抗培训框架内基于插值的基于插值的培训方法。在CiFar -10上,对抗性训练增加了标准测试错误(当没有对手时)从4.43%到12.32%,而我们的内插对抗培训我们保留了对抗性的鲁棒性,同时实现了仅6.45%的标准测试误差。通过我们的技术,强大模型标准误差的相对增加从178.1%降至仅为45.5%。此外,我们提供内插对抗性培训的数学分析,以确认其效率,并在鲁棒性和泛化方面展示其优势。
translated by 谷歌翻译
深度神经网络很容易被称为对抗攻击的小扰动都愚弄。对抗性培训(AT)是一种近似解决了稳健的优化问题,以最大限度地减少最坏情况损失,并且被广泛认为是对这种攻击的最有效的防御。由于产生了强大的对抗性示例的高计算时间,已经提出了单步方法来减少培训时间。然而,这些方法遭受灾难性的过度装备,在训练期间侵犯准确度下降。虽然提出了改进,但它们增加了培训时间和稳健性远非多步骤。我们为FW优化(FW-AT)开发了对抗的对抗培训的理论框架,揭示了损失景观与$ \ ell_2 $失真之间的几何连接。我们分析地表明FW攻击的高变形相当于沿攻击路径的小梯度变化。然后在各种深度神经网络架构上进行实验证明,$ \ ell \ infty $攻击对抗强大的模型实现近乎最大的$ \ ell_2 $失真,而标准网络具有较低的失真。此外,实验表明,灾难性的过度拟合与FW攻击的低变形强烈相关。为了展示我们理论框架的效用,我们开发FW-AT-Adap,这是一种新的逆势训练算法,它使用简单的失真度量来调整攻击步骤的数量,以提高效率而不会影响鲁棒性。 FW-AT-Adapt提供培训时间以单步快速分配方法,并改善了在白色盒子和黑匣子设置中的普发内精度的最小损失和多步PGD之间的差距。
translated by 谷歌翻译
深度神经网络(DNN)容易受到对抗性示例的影响,其中DNN由于含有不可察觉的扰动而被误导为虚假输出。对抗性训练是一种可靠有效的防御方法,可能会大大减少神经网络的脆弱性,并成为强大学习的事实上的标准。尽管许多最近的作品实践了以数据为中心的理念,例如如何生成更好的对抗性示例或使用生成模型来产生额外的培训数据,但我们回顾了模型本身,并从深度特征分布的角度重新审视对抗性的鲁棒性有见地的互补性。在本文中,我们建议分支正交性对抗训练(BORT)获得最先进的性能,仅使用原始数据集用于对抗训练。为了练习我们整合多个正交解决方案空间的设计思想,我们利用一个简单明了的多分支神经网络,可消除对抗性攻击而不会增加推理时间。我们启发提出相应的损耗函数,分支 - 正交丢失,以使多支出模型正交的每个溶液空间。我们分别在CIFAR-10,CIFAR-100和SVHN上评估了我们的方法,分别针对\ ell _ {\ infty}的规范触发尺寸\ epsilon = 8/255。进行了详尽的实验,以表明我们的方法超出了所有最新方法,而无需任何技巧。与所有不使用其他数据进行培训的方法相比,我们的模型在CIFAR-10和CIFAR-100上实现了67.3%和41.5%的鲁棒精度(在最先进的ART上提高了 +7.23%和 +9.07% )。我们还使用比我们的训练组胜过比我们的方法的表现要大得多。我们所有的模型和代码均可在https://github.com/huangd1999/bort上在线获得。
translated by 谷歌翻译
对抗性训练(AT)已被证明可以通过利用对抗性示例进行训练来有效地改善模型鲁棒性。但是,大多数方法面对昂贵的时间和计算成本,用于在生成对抗性示例的多个步骤中计算梯度。为了提高训练效率,快速梯度符号方法(FGSM)在方法中仅通过计算一次来快速地采用。不幸的是,鲁棒性远非令人满意。初始化的方式可能引起一个原因。现有的快速在通常使用随机的样本不合时宜的初始化,这促进了效率,但会阻碍进一步的稳健性改善。到目前为止,快速AT中的初始化仍未广泛探索。在本文中,我们以样本依赖性的对抗初始化(即,来自良性图像条件的生成网络的输出及其来自目标网络的梯度信息的输出)快速增强。随着生成网络和目标网络在训练阶段共同优化,前者可以适应相对于后者的有效初始化,从而激发了逐渐改善鲁棒性。在四个基准数据库上进行的实验评估证明了我们所提出的方法比在方法上快速的最先进方法的优越性,以及与方法相当的鲁棒性。该代码在https://github.com//jiaxiaojunqaq//fgsm-sdi上发布。
translated by 谷歌翻译
最近的研究表明,深度神经网络(DNNS)极易受到精心设计的对抗例子的影响。对那些对抗性例子的对抗性学习已被证明是防御这种攻击的最有效方法之一。目前,大多数现有的对抗示例生成方法基于一阶梯度,这几乎无法进一步改善模型的鲁棒性,尤其是在面对二阶对抗攻击时。与一阶梯度相比,二阶梯度提供了相对于自然示例的损失格局的更准确近似。受此启发的启发,我们的工作制作了二阶的对抗示例,并使用它们来训练DNNS。然而,二阶优化涉及Hessian Inverse的耗时计算。我们通过将问题转换为Krylov子空间中的优化,提出了一种近似方法,该方法显着降低了计算复杂性以加快训练过程。在矿工和CIFAR-10数据集上进行的广泛实验表明,我们使用二阶对抗示例的对抗性学习优于其他FISRT-阶方法,这可以改善针对广泛攻击的模型稳健性。
translated by 谷歌翻译
Adversarial training is widely used to improve the robustness of deep neural networks to adversarial attack. However, adversarial training is prone to overfitting, and the cause is far from clear. This work sheds light on the mechanisms underlying overfitting through analyzing the loss landscape w.r.t. the input. We find that robust overfitting results from standard training, specifically the minimization of the clean loss, and can be mitigated by regularization of the loss gradients. Moreover, we find that robust overfitting turns severer during adversarial training partially because the gradient regularization effect of adversarial training becomes weaker due to the increase in the loss landscapes curvature. To improve robust generalization, we propose a new regularizer to smooth the loss landscape by penalizing the weighted logits variation along the adversarial direction. Our method significantly mitigates robust overfitting and achieves the highest robustness and efficiency compared to similar previous methods. Code is available at https://github.com/TreeLLi/Combating-RO-AdvLC.
translated by 谷歌翻译
对共同腐败的稳健性的文献表明对逆势培训是否可以提高这种环境的性能,没有达成共识。 First, we show that, when used with an appropriately selected perturbation radius, $\ell_p$ adversarial training can serve as a strong baseline against common corruptions improving both accuracy and calibration.然后,我们解释了为什么对抗性训练比具有简单高斯噪声的数据增强更好地表现,这被观察到是对共同腐败的有意义的基线。与此相关,我们确定了高斯增强过度适用于用于培训的特定标准偏差的$ \ sigma $ -oviting现象,这对培训具有显着不利影响的普通腐败精度。我们讨论如何缓解这一问题,然后如何通过学习的感知图像贴片相似度引入对抗性训练的有效放松来进一步增强$ \ ell_p $普发的培训。通过对CiFar-10和Imagenet-100的实验,我们表明我们的方法不仅改善了$ \ ell_p $普发的培训基线,而且还有累积的收益与Augmix,Deepaulment,Ant和Sin等数据增强方法,导致普通腐败的最先进的表现。我们的实验代码在HTTPS://github.com/tml-epfl/adv-training - 窗子上公开使用。
translated by 谷歌翻译
最近,Wong等人。表明,使用单步FGSM的对抗训练导致一种名为灾难性过度拟合(CO)的特征故障模式,其中模型突然变得容易受到多步攻击的影响。他们表明,在FGSM(RS-FGSM)之前添加随机扰动似乎足以防止CO。但是,Andriushchenko和Flammarion观察到RS-FGSM仍会导致更大的扰动,并提出了一个昂贵的常规化器(Gradalign),DEMATER(GARGALIGN)DES昂贵(Gradalign)Dust Forrasiniger(Gradalign)Dust co避免在这项工作中,我们有条不紊地重新审视了噪声和剪辑在单步对抗训练中的作用。与以前的直觉相反,我们发现在干净的样品周围使用更强烈的噪声与不剪接相结合在避免使用大扰动半径的CO方面非常有效。基于这些观察结果,我们提出了噪声-FGSM(N-FGSM),尽管提供了单步对抗训练的好处,但在大型实验套件上没有经验分析,这表明N-FGSM能够匹配或超越以前的单步方法的性能,同时达到3 $ \ times $加速。代码可以在https://github.com/pdejorge/n-fgsm中找到
translated by 谷歌翻译
已知深度神经网络(DNN)容易受到用不可察觉的扰动制作的对抗性示例的影响,即,输入图像的微小变化会引起错误的分类,从而威胁着基于深度学习的部署系统的可靠性。经常采用对抗训练(AT)来通过训练损坏和干净的数据的混合物来提高DNN的鲁棒性。但是,大多数基于AT的方法在处理\ textit {转移的对抗示例}方面是无效的,这些方法是生成以欺骗各种防御模型的生成的,因此无法满足现实情况下提出的概括要求。此外,对抗性训练一般的国防模型不能对具有扰动的输入产生可解释的预测,而不同的领域专家则需要一个高度可解释的强大模型才能了解DNN的行为。在这项工作中,我们提出了一种基于Jacobian规范和选择性输入梯度正则化(J-SIGR)的方法,该方法通过Jacobian归一化提出了线性化的鲁棒性,还将基于扰动的显着性图正规化,以模仿模型的可解释预测。因此,我们既可以提高DNN的防御能力和高解释性。最后,我们评估了跨不同体系结构的方法,以针对强大的对抗性攻击。实验表明,提出的J-Sigr赋予了针对转移的对抗攻击的鲁棒性,我们还表明,来自神经网络的预测易于解释。
translated by 谷歌翻译
对抗性训练及其变体已成为使用神经网络实现对抗性稳健分类的普遍方法。但是,它的计算成本增加,以及标准性能和稳健性能之间的显着差距阻碍了进步,并提出了我们是否可以做得更好的问题。在这项工作中,我们退后一步,问:模型可以通过适当优化的集合通过标准培训来实现鲁棒性吗?为此,我们设计了一种用于鲁棒分类的元学习方法,该方法以原则性的方式在部署之前优化了数据集,并旨在有效地删除数据的非稳定部分。我们将优化方法作为内核回归的多步PGD程序进行了,其中一类核描述了无限宽的神经网(神经切线核-NTKS)。 MNIST和CIFAR-10的实验表明,当在内核回归分类器和神经网络中部署时,我们生成的数据集对PGD攻击都非常鲁棒性。但是,这种鲁棒性有些谬误,因为替代性攻击设法欺骗了模型,我们发现文献中以前的类似作品也是如此。我们讨论了这一点的潜在原因,并概述了进一步的研究途径。
translated by 谷歌翻译
现代神经网络Excel在图像分类中,但它们仍然容易受到常见图像损坏,如模糊,斑点噪音或雾。最近的方法关注这个问题,例如Augmix和Deepaulment,引入了在预期运行的防御,以期望图像损坏分布。相比之下,$ \ ell_p $ -norm界限扰动的文献侧重于针对最坏情况损坏的防御。在这项工作中,我们通过提出防范内人来调和两种方法,这是一种优化图像到图像模型的参数来产生对外损坏的增强图像的技术。我们理论上激发了我们的方法,并为其理想化版本的一致性以及大纲领提供了足够的条件。我们的分类机器在预期对CiFar-10-C进行的常见图像腐败基准上提高了最先进的,并改善了CIFAR-10和ImageNet上的$ \ ell_p $ -norm有界扰动的最坏情况性能。
translated by 谷歌翻译
深度神经网络(DNNS)最近在许多分类任务中取得了巨大的成功。不幸的是,它们容易受到对抗性攻击的影响,这些攻击会产生对抗性示例,这些示例具有很小的扰动,以欺骗DNN模型,尤其是在模型共享方案中。事实证明,对抗性训练是最有效的策略,它将对抗性示例注入模型训练中,以提高DNN模型的稳健性,以对对抗性攻击。但是,基于现有的对抗性示例的对抗训练无法很好地推广到标准,不受干扰的测试数据。为了在标准准确性和对抗性鲁棒性之间取得更好的权衡,我们提出了一个新型的对抗训练框架,称为潜在边界引导的对抗训练(梯子),该训练(梯子)在潜在的边界引导的对抗性示例上对对手进行对手训练DNN模型。与大多数在输入空间中生成对抗示例的现有方法相反,梯子通过增加对潜在特征的扰动而产生了无数的高质量对抗示例。扰动是沿SVM构建的具有注意机制的决策边界的正常情况进行的。我们从边界场的角度和可视化视图分析了生成的边界引导的对抗示例的优点。与Vanilla DNN和竞争性底线相比,对MNIST,SVHN,CELEBA和CIFAR-10的广泛实验和详细分析验证了梯子在标准准确性和对抗性鲁棒性之间取得更好的权衡方面的有效性。
translated by 谷歌翻译
对抗训练(AT)在防御对抗例子方面表现出色。最近的研究表明,示例对于AT期间模型的最终鲁棒性并不同样重要,即,所谓的硬示例可以攻击容易表现出比对最终鲁棒性的鲁棒示例更大的影响。因此,保证硬示例的鲁棒性对于改善模型的最终鲁棒性至关重要。但是,定义有效的启发式方法来寻找辛苦示例仍然很困难。在本文中,受到信息瓶颈(IB)原则的启发,我们发现了一个具有高度共同信息及其相关的潜在表示的例子,更有可能受到攻击。基于此观察,我们提出了一种新颖有效的对抗训练方法(Infoat)。鼓励Infoat找到具有高相互信息的示例,并有效利用它们以提高模型的最终鲁棒性。实验结果表明,与几种最先进的方法相比,Infoat在不同数据集和模型之间达到了最佳的鲁棒性。
translated by 谷歌翻译
Deep neural networks (DNNs) are found to be vulnerable to adversarial attacks, and various methods have been proposed for the defense. Among these methods, adversarial training has been drawing increasing attention because of its simplicity and effectiveness. However, the performance of the adversarial training is greatly limited by the architectures of target DNNs, which often makes the resulting DNNs with poor accuracy and unsatisfactory robustness. To address this problem, we propose DSARA to automatically search for the neural architectures that are accurate and robust after adversarial training. In particular, we design a novel cell-based search space specially for adversarial training, which improves the accuracy and the robustness upper bound of the searched architectures by carefully designing the placement of the cells and the proportional relationship of the filter numbers. Then we propose a two-stage search strategy to search for both accurate and robust neural architectures. At the first stage, the architecture parameters are optimized to minimize the adversarial loss, which makes full use of the effectiveness of the adversarial training in enhancing the robustness. At the second stage, the architecture parameters are optimized to minimize both the natural loss and the adversarial loss utilizing the proposed multi-objective adversarial training method, so that the searched neural architectures are both accurate and robust. We evaluate the proposed algorithm under natural data and various adversarial attacks, which reveals the superiority of the proposed method in terms of both accurate and robust architectures. We also conclude that accurate and robust neural architectures tend to deploy very different structures near the input and the output, which has great practical significance on both hand-crafting and automatically designing of accurate and robust neural architectures.
translated by 谷歌翻译
快速对抗训练(脂肪)有效地提高了标准对抗训练(SAT)的效率。然而,初始脂肪遇到灾难性的过度拟合,即,对抗性攻击的稳健精度突然并大大减少。尽管有几种脂肪变体毫不费力地防止过度拟合,但他们牺牲了很多计算成本。在本文中,我们探讨了SAT和FAT的训练过程之间的差异,并观察到,对抗性实例(AES)脂肪的攻击成功率在后期训练阶段逐渐变得更糟,从而导致过度拟合。 AE是通过零或随机初始化的快速梯度标志方法(FGSM)生成的。根据观察结果,我们提出了一种先前的FGSM初始化方法,以避免在研究多种初始化策略后避免过度适应,从而在整个训练过程中提高了AE的质量。初始化是通过利用历史上生成的AE而没有额外计算成本而形成的。我们进一步为提出的初始化方法提供了理论分析。我们还基于先前的初始化,即当前生成的扰动不应过多地偏离先前引导的初始化,因此我们还提出了一个简单而有效的正规化程序。正常化器同时采用历史和当前的对抗性扰动来指导模型学习。在四个数据集上进行的评估表明,所提出的方法可以防止灾难性过度拟合和优于最先进的脂肪方法。该代码在https://github.com/jiaxiaojunqaq/fgsm-pgi上发布。
translated by 谷歌翻译
Adversarial training, a method for learning robust deep networks, is typically assumed to be more expensive than traditional training due to the necessity of constructing adversarial examples via a first-order method like projected gradient decent (PGD). In this paper, we make the surprising discovery that it is possible to train empirically robust models using a much weaker and cheaper adversary, an approach that was previously believed to be ineffective, rendering the method no more costly than standard training in practice. Specifically, we show that adversarial training with the fast gradient sign method (FGSM), when combined with random initialization, is as effective as PGD-based training but has significantly lower cost. Furthermore we show that FGSM adversarial training can be further accelerated by using standard techniques for efficient training of deep networks, allowing us to learn a robust CIFAR10 classifier with 45% robust accuracy to PGD attacks with = 8/255 in 6 minutes, and a robust ImageNet classifier with 43% robust accuracy at = 2/255 in 12 hours, in comparison to past work based on "free" adversarial training which took 10 and 50 hours to reach the same respective thresholds. Finally, we identify a failure mode referred to as "catastrophic overfitting" which may have caused previous attempts to use FGSM adversarial training to fail. All code for reproducing the experiments in this paper as well as pretrained model weights are at https://github.com/locuslab/fast_adversarial.
translated by 谷歌翻译
有必要提高某些特殊班级的表现,或者特别保护它们免受对抗学习的攻击。本文提出了一个将成本敏感分类和对抗性学习结合在一起的框架,以训练可以区分受保护和未受保护的类的模型,以使受保护的类别不太容易受到对抗性示例的影响。在此框架中,我们发现在训练深神经网络(称为Min-Max属性)期间,一个有趣的现象,即卷积层中大多数参数的绝对值。基于这种最小的最大属性,该属性是在随机分布的角度制定和分析的,我们进一步建立了一个针对对抗性示例的新防御模型,以改善对抗性鲁棒性。构建模型的一个优点是,它的性能比标准模型更好,并且可以与对抗性训练相结合,以提高性能。在实验上证实,对于所有类别的平均准确性,我们的模型在没有发生攻击时几乎与现有模型一样,并且在发生攻击时比现有模型更好。具体而言,关于受保护类的准确性,提议的模型比发生攻击时的现有模型要好得多。
translated by 谷歌翻译