Deep neural networks (DNNs) are found to be vulnerable to adversarial attacks, and various methods have been proposed for the defense. Among these methods, adversarial training has been drawing increasing attention because of its simplicity and effectiveness. However, the performance of the adversarial training is greatly limited by the architectures of target DNNs, which often makes the resulting DNNs with poor accuracy and unsatisfactory robustness. To address this problem, we propose DSARA to automatically search for the neural architectures that are accurate and robust after adversarial training. In particular, we design a novel cell-based search space specially for adversarial training, which improves the accuracy and the robustness upper bound of the searched architectures by carefully designing the placement of the cells and the proportional relationship of the filter numbers. Then we propose a two-stage search strategy to search for both accurate and robust neural architectures. At the first stage, the architecture parameters are optimized to minimize the adversarial loss, which makes full use of the effectiveness of the adversarial training in enhancing the robustness. At the second stage, the architecture parameters are optimized to minimize both the natural loss and the adversarial loss utilizing the proposed multi-objective adversarial training method, so that the searched neural architectures are both accurate and robust. We evaluate the proposed algorithm under natural data and various adversarial attacks, which reveals the superiority of the proposed method in terms of both accurate and robust architectures. We also conclude that accurate and robust neural architectures tend to deploy very different structures near the input and the output, which has great practical significance on both hand-crafting and automatically designing of accurate and robust neural architectures.
translated by 谷歌翻译
已经发现深层神经网络容易受到对抗攻击的影响,从而引起了对安全敏感的环境的潜在关注。为了解决这个问题,最近的研究从建筑的角度研究了深神经网络的对抗性鲁棒性。但是,搜索深神经网络的体系结构在计算上是昂贵的,尤其是当与对抗性训练过程相结合时。为了应对上述挑战,本文提出了双重主体神经体系结构搜索方法。首先,我们制定了NAS问题,以增强深度神经网络的对抗性鲁棒性为多目标优化问题。具体而言,除了低保真绩效预测器作为第一个目标外,我们还利用辅助目标 - 其值是经过高保真评估训练的替代模型的输出。其次,我们通过结合三种性能估计方法,即参数共享,低保真评估和基于替代的预测指标来降低计算成本。在CIFAR-10,CIFAR-100和SVHN数据集上进行的广泛实验证实了所提出的方法的有效性。
translated by 谷歌翻译
已知深神经网络(DNN)容易受到对抗性攻击的影响。已经提出了一系列防御方法来培训普遍稳健的DNN,其中对抗性培训已经证明了有希望的结果。然而,尽管对对抗性培训开发的初步理解,但从架构角度来看,它仍然不明确,从架构角度来看,什么配置可以导致更强大的DNN。在本文中,我们通过全面调查网络宽度和深度对前对方培训的DNN的鲁棒性的全面调查来解决这一差距。具体地,我们进行以下关键观察:1)更多参数(更高的模型容量)不一定有助于对抗冒险; 2)网络的最后阶段(最后一组块)降低能力实际上可以改善对抗性的鲁棒性; 3)在相同的参数预算下,存在对抗性鲁棒性的最佳架构配置。我们还提供了一个理论分析,解释了为什么这种网络配置可以帮助鲁棒性。这些架构见解可以帮助设计对抗的强制性DNN。代码可用于\ url {https://github.com/hanxunh/robustwrn}。
translated by 谷歌翻译
由于计算成本和能耗有限,部署在移动设备中的大多数神经网络模型都很小。然而,微小的神经网络通常很容易攻击。目前的研究证明,较大的模型规模可以提高鲁棒性,但很少的研究侧重于如何增强微小神经网络的稳健性。我们的工作侧重于如何改善微小神经网络的稳健性,而不会严重恶化移动级资源下的清洁准确性。为此,我们提出了一种多目标oneShot网络架构搜索(NAS)算法,以便在对抗准确度,清洁精度和模型尺寸方面获得最佳权衡网络。具体而言,我们基于新的微小块和通道设计一种新的搜索空间,以平衡模型大小和对抗性能。此外,由于SUPERNET显着影响了我们NAS算法中子网的性能,因此我们揭示了对SuperNet如何有助于获得白盒对抗攻击下最好的子网的洞察力。具体地,我们通过分析对抗性可转移性,超空网的宽度以及从头划痕和微调训练子网之间的差异来探索新的对抗性培训范式。最后,我们对第一个非主导的前沿的某些块和通道的层面组合进行了统计分析,这可以作为设计微小神经网络架构以实现对抗性扰动的指导。
translated by 谷歌翻译
关于神经体系结构搜索(NAS)的现有研究主要集中于有效地搜索具有更好性能的网络体系结构。几乎没有取得进展,以系统地了解NAS搜索的架构是否对隐私攻击是强大的,而丰富的工作已经表明,人类设计的架构容易受到隐私攻击。在本文中,我们填补了这一空白,并系统地衡量了NAS体系结构的隐私风险。利用我们的测量研究中的见解,我们进一步探索了基于细胞的NAS架构的细胞模式,并评估细胞模式如何影响NAS搜索架构的隐私风险。通过广泛的实验,我们阐明了如何针对隐私攻击设计强大的NAS体系结构,还提供了一种通用方法,以了解NAS搜索的体系结构与其他隐私风险之间的隐藏相关性。
translated by 谷歌翻译
已知深度神经网络(DNN)容易受到用不可察觉的扰动制作的对抗性示例的影响,即,输入图像的微小变化会引起错误的分类,从而威胁着基于深度学习的部署系统的可靠性。经常采用对抗训练(AT)来通过训练损坏和干净的数据的混合物来提高DNN的鲁棒性。但是,大多数基于AT的方法在处理\ textit {转移的对抗示例}方面是无效的,这些方法是生成以欺骗各种防御模型的生成的,因此无法满足现实情况下提出的概括要求。此外,对抗性训练一般的国防模型不能对具有扰动的输入产生可解释的预测,而不同的领域专家则需要一个高度可解释的强大模型才能了解DNN的行为。在这项工作中,我们提出了一种基于Jacobian规范和选择性输入梯度正则化(J-SIGR)的方法,该方法通过Jacobian归一化提出了线性化的鲁棒性,还将基于扰动的显着性图正规化,以模仿模型的可解释预测。因此,我们既可以提高DNN的防御能力和高解释性。最后,我们评估了跨不同体系结构的方法,以针对强大的对抗性攻击。实验表明,提出的J-Sigr赋予了针对转移的对抗攻击的鲁棒性,我们还表明,来自神经网络的预测易于解释。
translated by 谷歌翻译
The study on improving the robustness of deep neural networks against adversarial examples grows rapidly in recent years. Among them, adversarial training is the most promising one, which flattens the input loss landscape (loss change with respect to input) via training on adversarially perturbed examples. However, how the widely used weight loss landscape (loss change with respect to weight) performs in adversarial training is rarely explored. In this paper, we investigate the weight loss landscape from a new perspective, and identify a clear correlation between the flatness of weight loss landscape and robust generalization gap. Several well-recognized adversarial training improvements, such as early stopping, designing new objective functions, or leveraging unlabeled data, all implicitly flatten the weight loss landscape. Based on these observations, we propose a simple yet effective Adversarial Weight Perturbation (AWP) to explicitly regularize the flatness of weight loss landscape, forming a double-perturbation mechanism in the adversarial training framework that adversarially perturbs both inputs and weights. Extensive experiments demonstrate that AWP indeed brings flatter weight loss landscape and can be easily incorporated into various existing adversarial training methods to further boost their adversarial robustness.
translated by 谷歌翻译
在变异场景中已经揭示了对抗性实例的现象。最近的研究表明,精心设计的对抗性防御策略可以改善深度学习模型针对对抗性例子的鲁棒性。但是,随着国防技术的快速发展,由于现有手动设计的对抗性攻击的性能较弱,因此很难评估防御模型的鲁棒性。为了应对挑战,鉴于防御模型,需要进一步利用有效的对抗性攻击,较少的计算负担和较低的健壮精度。因此,我们提出了一种用于自动对抗攻击优化设计的多目标模因算法,该算法实现了对近乎最佳的对抗性攻击对防御模型的近乎最佳的对抗性攻击。首先,构建了自动对抗攻击优化设计的更通用的数学模型,其中搜索空间不仅包括攻击者操作,大小,迭代号和损失功能,还包括多个对抗性攻击的连接方式。此外,我们开发了一种组合NSGA-II和本地搜索以解决优化问题的多目标模因算法。最后,为了降低搜索过程中的评估成本,我们根据模型输出的每个图像的跨熵损失值的排序提出了代表性的数据选择策略。关于CIFAR10,CIFAR100和Imagenet数据集的实验显示了我们提出的方法的有效性。
translated by 谷歌翻译
Deep neural networks (DNNs) are one of the most prominent technologies of our time, as they achieve state-of-the-art performance in many machine learning tasks, including but not limited to image classification, text mining, and speech processing. However, recent research on DNNs has indicated ever-increasing concern on the robustness to adversarial examples, especially for security-critical tasks such as traffic sign identification for autonomous driving. Studies have unveiled the vulnerability of a well-trained DNN by demonstrating the ability of generating barely noticeable (to both human and machines) adversarial images that lead to misclassification. Furthermore, researchers have shown that these adversarial images are highly transferable by simply training and attacking a substitute model built upon the target model, known as a black-box attack to DNNs.Similar to the setting of training substitute models, in this paper we propose an effective black-box attack that also only has access to the input (images) and the output (confidence scores) of a targeted DNN. However, different from leveraging attack transferability from substitute models, we propose zeroth order optimization (ZOO) based attacks to directly estimate the gradients of the targeted DNN for generating adversarial examples. We use zeroth order stochastic coordinate descent along with dimension reduction, hierarchical attack and importance sampling techniques to * Pin-Yu Chen and Huan Zhang contribute equally to this work.
translated by 谷歌翻译
与此同时,黑匣子对抗攻击已经吸引了令人印象深刻的注意,在深度学习安全领域的实际应用,同时,由于无法访问目标模型的网络架构或内部权重,非常具有挑战性。基于假设:如果一个例子对多种型号保持过逆势,那么它更有可能将攻击能力转移到其他模型,基于集合的对抗攻击方法是高效的,用于黑匣子攻击。然而,集合攻击的方式相当不那么调查,并且现有的集合攻击只是均匀地融合所有型号的输出。在这项工作中,我们将迭代集合攻击视为随机梯度下降优化过程,其中不同模型上梯度的变化可能导致众多局部Optima差。为此,我们提出了一种新的攻击方法,称为随机方差减少了整体(SVRE)攻击,这可以降低集合模型的梯度方差,并充分利用集合攻击。标准想象数据集的经验结果表明,所提出的方法可以提高对抗性可转移性,并且优于现有的集合攻击显着。
translated by 谷歌翻译
基于深度神经网络(DNN)的智能信息(IOT)系统已被广泛部署在现实世界中。然而,发现DNNS易受对抗性示例的影响,这提高了人们对智能物联网系统的可靠性和安全性的担忧。测试和评估IOT系统的稳健性成为必要和必要。最近已经提出了各种攻击和策略,但效率问题仍未纠正。现有方法是计算地广泛或耗时,这在实践中不适用。在本文中,我们提出了一种称为攻击启发GaN(AI-GaN)的新框架,在有条件地产生对抗性实例。曾经接受过培训,可以有效地给予对抗扰动的输入图像和目标类。我们在白盒设置的不同数据集中应用AI-GaN,黑匣子设置和由最先进的防御保护的目标模型。通过广泛的实验,AI-GaN实现了高攻击成功率,优于现有方法,并显着降低了生成时间。此外,首次,AI-GaN成功地缩放到复杂的数据集。 Cifar-100和Imagenet,所有课程中的成功率约为90美元。
translated by 谷歌翻译
作为反对攻击的最有效的防御方法之一,对抗性训练倾向于学习包容性的决策边界,以提高深度学习模型的鲁棒性。但是,由于沿对抗方向的边缘的大幅度和不必要的增加,对抗性训练会在自然实例和对抗性示例之间引起严重的交叉,这不利于平衡稳健性和自然准确性之间的权衡。在本文中,我们提出了一种新颖的对抗训练计划,以在稳健性和自然准确性之间进行更好的权衡。它旨在学习一个中度包容的决策边界,这意味着决策边界下的自然示例的边缘是中等的。我们称此方案为中等边缘的对抗训练(MMAT),该方案生成更细粒度的对抗示例以减轻交叉问题。我们还利用了经过良好培训的教师模型的逻辑来指导我们的模型学习。最后,MMAT在Black-Box和White-Box攻击下都可以实现高自然的精度和鲁棒性。例如,在SVHN上,实现了最新的鲁棒性和自然精度。
translated by 谷歌翻译
为了应对对抗性实例的威胁,对抗性培训提供了一种有吸引力的选择,可以通过在线增强的对抗示例中的培训模型提高模型稳健性。然而,大多数现有的对抗训练方法通过强化对抗性示例来侧重于提高鲁棒的准确性,但忽略了天然数据和对抗性实施例之间的增加,导致自然精度急剧下降。为了维持自然和强大的准确性之间的权衡,我们从特征适应的角度缓解了转变,并提出了一种特征自适应对抗训练(FAAT),这些培训(FAAT)跨越自然数据和对抗示例优化类条件特征适应。具体而言,我们建议纳入一类条件鉴别者,以鼓励特征成为(1)类鉴别的和(2)不变导致对抗性攻击的变化。新型的FAAT框架通过在天然和对抗数据中产生具有类似分布的特征来实现自然和强大的准确性之间的权衡,并实现从类鉴别特征特征中受益的更高的整体鲁棒性。在各种数据集上的实验表明,FAAT产生更多辨别特征,并对最先进的方法表现有利。代码在https://github.com/visionflow/faat中获得。
translated by 谷歌翻译
近年来,可微弱的建筑搜索(飞镖)已经受到了大量的关注,主要是因为它通过重量分享和连续放松来显着降低计算成本。然而,更近期的作品发现现有的可分辨率NAS技术难以俯视幼稚基线,产生劣化架构作为搜索所需。本文通过将体系结构权重放入高斯分布,而不是直接优化架构参数,而不是直接优化架构参数,而是作为分布学习问题。通过利用自然梯度变分推理(NGVI),可以基于现有的码票来容易地优化架构分布而不会产生更多内存和计算消耗。我们展示了贝叶斯原则的可分解NAS如何益处,提高勘探和提高稳定性。 NAS-BENCH-201和NAS-BENCH-1SHOT1基准数据集的实验结果证实了所提出的框架可以制造的重要改进。此外,我们还在学习参数上只需简单地应用argmax,我们进一步利用了NAS中最近提出的无培训代理,从优化分布中汲取的组架构中选择最佳架构,从而实现最终的架构-ART在NAS-BENCH-201和NAS-BENCH-1SHOT1基准上的结果。我们在飞镖搜索空间中的最佳架构也会分别获得2.37 \%,15.72 \%和24.2 \%的竞争性测试错误,分别在Cifar-10,CiFar-100和Imagenet数据集上。
translated by 谷歌翻译
最近的研究表明,深度神经网络(DNNS)极易受到精心设计的对抗例子的影响。对那些对抗性例子的对抗性学习已被证明是防御这种攻击的最有效方法之一。目前,大多数现有的对抗示例生成方法基于一阶梯度,这几乎无法进一步改善模型的鲁棒性,尤其是在面对二阶对抗攻击时。与一阶梯度相比,二阶梯度提供了相对于自然示例的损失格局的更准确近似。受此启发的启发,我们的工作制作了二阶的对抗示例,并使用它们来训练DNNS。然而,二阶优化涉及Hessian Inverse的耗时计算。我们通过将问题转换为Krylov子空间中的优化,提出了一种近似方法,该方法显着降低了计算复杂性以加快训练过程。在矿工和CIFAR-10数据集上进行的广泛实验表明,我们使用二阶对抗示例的对抗性学习优于其他FISRT-阶方法,这可以改善针对广泛攻击的模型稳健性。
translated by 谷歌翻译
对抗性的鲁棒性已经成为深度学习的核心目标,无论是在理论和实践中。然而,成功的方法来改善对抗的鲁棒性(如逆势训练)在不受干扰的数据上大大伤害了泛化性能。这可能会对对抗性鲁棒性如何影响现实世界系统的影响(即,如果它可以提高未受干扰的数据的准确性),许多人可能选择放弃鲁棒性)。我们提出内插对抗培训,该培训最近雇用了在对抗培训框架内基于插值的基于插值的培训方法。在CiFar -10上,对抗性训练增加了标准测试错误(当没有对手时)从4.43%到12.32%,而我们的内插对抗培训我们保留了对抗性的鲁棒性,同时实现了仅6.45%的标准测试误差。通过我们的技术,强大模型标准误差的相对增加从178.1%降至仅为45.5%。此外,我们提供内插对抗性培训的数学分析,以确认其效率,并在鲁棒性和泛化方面展示其优势。
translated by 谷歌翻译
对抗性培训已被广泛用于增强神经网络模型对抗对抗攻击的鲁棒性。但是,自然准确性与强大的准确性之间仍有一个显着的差距。我们发现其中一个原因是常用的标签,单热量矢量,阻碍了图像识别的学习过程。在本文中,我们提出了一种称为低温蒸馏(LTD)的方法,该方法基于知识蒸馏框架来产生所需的软标记。与以前的工作不同,LTD在教师模型中使用相对较低的温度,采用不同但固定的,温度为教师模型和学生模型。此外,我们已经调查了有限公司协同使用自然数据和对抗性的方法。实验结果表明,在没有额外的未标记数据的情况下,所提出的方法与上一项工作相结合,可以分别在CiFar-10和CiFar-100数据集上实现57.72 \%和30.36 \%的鲁棒精度,这是州的大约1.21 \%通常的方法平均。
translated by 谷歌翻译
深度学习技术在各种任务中都表现出了出色的有效性,并且深度学习具有推进多种应用程序(包括在边缘计算中)的潜力,其中将深层模型部署在边缘设备上,以实现即时的数据处理和响应。一个关键的挑战是,虽然深层模型的应用通常会产生大量的内存和计算成本,但Edge设备通常只提供非常有限的存储和计算功能,这些功能可能会在各个设备之间差异很大。这些特征使得难以构建深度学习解决方案,以释放边缘设备的潜力,同时遵守其约束。应对这一挑战的一种有希望的方法是自动化有效的深度学习模型的设计,这些模型轻巧,仅需少量存储,并且仅产生低计算开销。该调查提供了针对边缘计算的深度学习模型设计自动化技术的全面覆盖。它提供了关键指标的概述和比较,这些指标通常用于量化模型在有效性,轻度和计算成本方面的水平。然后,该调查涵盖了深层设计自动化技术的三类最新技术:自动化神经体系结构搜索,自动化模型压缩以及联合自动化设计和压缩。最后,调查涵盖了未来研究的开放问题和方向。
translated by 谷歌翻译
评估防御模型的稳健性是对抗对抗鲁棒性研究的具有挑战性的任务。僵化的渐变,先前已经发现了一种梯度掩蔽,以许多防御方法存在并导致鲁棒性的错误信号。在本文中,我们确定了一种更细微的情况,称为不平衡梯度,也可能导致过高的对抗性鲁棒性。当边缘损耗的一个术语的梯度主导并将攻击朝向次优化方向推动时,发生不平衡梯度的现象。为了利用不平衡的梯度,我们制定了分解利润率损失的边缘分解(MD)攻击,并通过两阶段过程分别探讨了这些术语的攻击性。我们还提出了一个Multared和Ensemble版本的MD攻击。通过调查自2018年以来提出的17个防御模型,我们发现6种型号易受不平衡梯度的影响,我们的MD攻击可以减少由最佳基线独立攻击评估的鲁棒性另外2%。我们还提供了对不平衡梯度的可能原因和有效对策的深入分析。
translated by 谷歌翻译
近年来,计算机视觉社区中最受欢迎的技术之一就是深度学习技术。作为一种数据驱动的技术,深层模型需要大量准确标记的培训数据,这在许多现实世界中通常是无法访问的。数据空间解决方案是数据增强(DA),可以人为地从原始样本中生成新图像。图像增强策略可能因数据集而有所不同,因为不同的数据类型可能需要不同的增强以促进模型培训。但是,DA策略的设计主要由具有领域知识的人类专家决定,这被认为是高度主观和错误的。为了减轻此类问题,一个新颖的方向是使用自动数据增强(AUTODA)技术自动从给定数据集中学习图像增强策略。 Autoda模型的目的是找到可以最大化模型性能提高的最佳DA策略。这项调查从图像分类的角度讨论了Autoda技术出现的根本原因。我们确定标准自动赛车模型的三个关键组件:搜索空间,搜索算法和评估功能。根据他们的架构,我们提供了现有图像AUTODA方法的系统分类法。本文介绍了Autoda领域的主要作品,讨论了他们的利弊,并提出了一些潜在的方向以进行未来的改进。
translated by 谷歌翻译