Ramp merging is a typical application of cooperative intelligent transportation system (C-ITS). Vehicle trajectories perceived by roadside sensors are importation complement to the limited visual field of on-board perception. Vehicle tracking and trajectory denoising algorithm is proposed in this paper to take full advantage of roadside cameras for vehicle trajectory and speed profile estimation. Dynamic speed guidance algorithm is proposed to help on-ramp vehicles to merge into mainline smoothly, even in non-cooperative environment where mainline vehicles are not expected to slow down to accommodate on-ramp vehicles. On-site experiments were taken out in a merging area of Hangzhou Belt Highway to testify our prototype system, and simulation analysis shows our proposed algorithm can achieve significant fuel savings during the ramp merging process.
translated by 谷歌翻译
本文提出了一个基于加固学习(RL)的电动连接车辆(CV)的生态驾驶框架,以提高信号交叉点的车辆能效。通过整合基于型号的汽车策略,改变车道的政策和RL政策来确保车辆代理的安全操作。随后,制定了马尔可夫决策过程(MDP),该过程使车辆能够执行纵向控制和横向决策,从而共同优化了交叉口附近CVS的CAR跟踪和改变车道的行为。然后,将混合动作空间参数化为层次结构,从而在动态交通环境中使用二维运动模式训练代理。最后,我们所提出的方法从基于单车的透视和基于流的透视图中在Sumo软件中进行了评估。结果表明,我们的策略可以通过学习适当的动作方案来大大减少能源消耗,而不会中断其他人类驱动的车辆(HDVS)。
translated by 谷歌翻译
高速公路飞行员辅助已成为先进驾驶员辅助系统的前线。对安全和用户验收的提高要求正在呼吁在此类系统的开发过程中进行个性化。通过对横向对驾驶员的偏好进行了启发的启发,提出了一种个性化的公路导频辅助算法,其包括基于智能驱动器模型(IDM)的速度控制模型和考虑领先的车辆横向的新车道保持模型。移动。进行了模拟驾驶实验,以分析自由驾驶和行驶场景中的驾驶员凝视和泳道保持行为。驱动程序集中成两个驾驶样式组,指的是其受前方车辆影响的驾驶行为,然后优化每个特定主题驱动程序的个性化参数。通过基于移动基础模拟器的驾驶员实验验证了所提出的算法。结果表明,与未个性化算法相比,个性化公路试点算法可以显着降低心理工作量,并提高用户接受辅助功能。
translated by 谷歌翻译
一般而言,融合是人类驱动因素和自治车辆的具有挑战性的任务,特别是在密集的交通中,因为合并的车辆通常需要与其他车辆互动以识别或创造间隙并安全合并。在本文中,我们考虑了强制合并方案的自主车辆控制问题。我们提出了一种新的游戏 - 理论控制器,称为领导者跟随者游戏控制器(LFGC),其中自主EGO车辆和其他具有先验不确定驾驶意图的车辆之间的相互作用被建模为部分可观察到的领导者 - 跟随游戏。 LFGC估计基于观察到的轨迹的其他车辆在线在线,然后预测其未来的轨迹,并计划使用模型预测控制(MPC)来同时实现概率保证安全性和合并目标的自我车辆自己的轨迹。为了验证LFGC的性能,我们在模拟和NGSIM数据中测试它,其中LFGC在合并中展示了97.5%的高成功率。
translated by 谷歌翻译
随着智能车辆和先进驾驶员援助系统(ADAS)的快速发展,新趋势是人类驾驶员的混合水平将参与运输系统。因此,在这种情况下,司机的必要视觉指导对于防止潜在风险至关重要。为了推进视觉指导系统的发展,我们介绍了一种新的视觉云数据融合方法,从云中集成相机图像和数字双胞胎信息,帮助智能车辆做出更好的决策。绘制目标车辆边界框并在物体检测器的帮助下(在EGO车辆上运行)和位置信息(从云接收)匹配。使用深度图像作为附加特征源获得最佳匹配结果,从工会阈值下面的0.7交叉口下的精度为79.2%。进行了对车道改变预测的案例研究,以表明所提出的数据融合方法的有效性。在案例研究中,提出了一种多层的Perceptron算法,用修改的车道改变预测方法提出。从Unity游戏发动机获得的人型仿真结果表明,在安全性,舒适度和环境可持续性方面,拟议的模型可以显着提高高速公路驾驶性能。
translated by 谷歌翻译
Proper functioning of connected and automated vehicles (CAVs) is crucial for the safety and efficiency of future intelligent transport systems. Meanwhile, transitioning to fully autonomous driving requires a long period of mixed autonomy traffic, including both CAVs and human-driven vehicles. Thus, collaboration decision-making for CAVs is essential to generate appropriate driving behaviors to enhance the safety and efficiency of mixed autonomy traffic. In recent years, deep reinforcement learning (DRL) has been widely used in solving decision-making problems. However, the existing DRL-based methods have been mainly focused on solving the decision-making of a single CAV. Using the existing DRL-based methods in mixed autonomy traffic cannot accurately represent the mutual effects of vehicles and model dynamic traffic environments. To address these shortcomings, this article proposes a graph reinforcement learning (GRL) approach for multi-agent decision-making of CAVs in mixed autonomy traffic. First, a generic and modular GRL framework is designed. Then, a systematic review of DRL and GRL methods is presented, focusing on the problems addressed in recent research. Moreover, a comparative study on different GRL methods is further proposed based on the designed framework to verify the effectiveness of GRL methods. Results show that the GRL methods can well optimize the performance of multi-agent decision-making for CAVs in mixed autonomy traffic compared to the DRL methods. Finally, challenges and future research directions are summarized. This study can provide a valuable research reference for solving the multi-agent decision-making problems of CAVs in mixed autonomy traffic and can promote the implementation of GRL-based methods into intelligent transportation systems. The source code of our work can be found at https://github.com/Jacklinkk/Graph_CAVs.
translated by 谷歌翻译
Traditional planning and control methods could fail to find a feasible trajectory for an autonomous vehicle to execute amongst dense traffic on roads. This is because the obstacle-free volume in spacetime is very small in these scenarios for the vehicle to drive through. However, that does not mean the task is infeasible since human drivers are known to be able to drive amongst dense traffic by leveraging the cooperativeness of other drivers to open a gap. The traditional methods fail to take into account the fact that the actions taken by an agent affect the behaviour of other vehicles on the road. In this work, we rely on the ability of deep reinforcement learning to implicitly model such interactions and learn a continuous control policy over the action space of an autonomous vehicle. The application we consider requires our agent to negotiate and open a gap in the road in order to successfully merge or change lanes. Our policy learns to repeatedly probe into the target road lane while trying to find a safe spot to move in to. We compare against two model-predictive control-based algorithms and show that our policy outperforms them in simulation.
translated by 谷歌翻译
最近,自主驾驶社会上有许多进展,吸引了学术界和工业的很多关注。然而,现有的作品主要专注于汽车,自动驾驶卡车算法和模型仍然需要额外的开发。在本文中,我们介绍了智能自动驾驶卡车系统。我们所呈现的系统由三个主要组成部分组成,1)一个现实的交通仿真模块,用于在测试场景中产生现实的交通流量,2)设计和评估了在现实世界部署中模仿实际卡车响应的高保真卡车模型,3 )具有基于学习的决策算法和多模轨迹策划仪的智能计划模块,考虑到卡车的约束,道路斜率变化和周围的交通流量。我们为每个组分单独提供定量评估,以证明每个部件的保真度和性能。我们还将我们的建议系统部署在真正的卡车上,并进行真实的世界实验,表明我们的系统能力缓解了SIM-TO-REAL差距。我们的代码可以在https://github.com/inceptioresearch/iits提供
translated by 谷歌翻译
自动驾驶在过去二十年中吸引了重要的研究兴趣,因为它提供了许多潜在的好处,包括释放驾驶和减轻交通拥堵的司机等。尽管进展有前途,但车道变化仍然是自治车辆(AV)的巨大挑战,特别是在混合和动态的交通方案中。最近,强化学习(RL)是一种强大的数据驱动控制方法,已被广泛探索了在令人鼓舞的效果中的通道中的车道改变决策。然而,这些研究的大多数研究专注于单车展,并且在多个AVS与人类驱动车辆(HDV)共存的情况下,道路变化已经受到稀缺的关注。在本文中,我们在混合交通公路环境中制定了多个AVS的车道改变决策,作为多功能增强学习(Marl)问题,其中每个AV基于相邻AV的动作使车道变化的决定和HDV。具体地,使用新颖的本地奖励设计和参数共享方案开发了一种多代理优势演员批评网络(MA2C)。特别是,提出了一种多目标奖励功能来纳入燃油效率,驾驶舒适度和自主驾驶的安全性。综合实验结果,在三种不同的交通密度和各级人类司机侵略性下进行,表明我们所提出的Marl框架在效率,安全和驾驶员舒适方面始终如一地优于几个最先进的基准。
translated by 谷歌翻译
在过去的几十年中,车辆的升级和更新加速了。出于对环境友好和情报的需求,电动汽车(EV)以及连接和自动化的车辆(CAVS)已成为运输系统的新组成部分。本文开发了一个增强学习框架,以在信号交叉点上对由骑士和人类驱动车辆(HDV)组成的电力排实施自适应控制。首先,提出了马尔可夫决策过程(MDP)模型来描述混合排的决策过程。新颖的状态表示和奖励功能是为模型设计的,以考虑整个排的行为。其次,为了处理延迟的奖励,提出了增强的随机搜索(ARS)算法。代理商所学到的控制政策可以指导骑士的纵向运动,后者是排的领导者。最后,在模拟套件相扑中进行了一系列模拟。与几种最先进的(SOTA)强化学习方法相比,提出的方法可以获得更高的奖励。同时,仿真结果证明了延迟奖励的有效性,延迟奖励的有效性均优于分布式奖励机制}与正常的汽车跟随行为相比,灵敏度分析表明,可以将能量保存到不同的扩展(39.27%-82.51%))通过调整优化目标的相对重要性。在没有牺牲行进延迟的前提下,建议的控制方法可以节省多达53.64%的电能。
translated by 谷歌翻译
合作感知的想法是从多辆车之间的共同感知数据中受益,并克服单车上车载传感器的局限性。但是,由于本地化不准确,通信带宽和模棱两可的融合,多车信息的融合仍然具有挑战性。过去的实践通过放置精确的GNSS定位系统来简化问题,手动指定连接的车辆数量并确定融合策略。本文提出了一个基于地图的合作感​​知框架,名为MAP容器,以提高合作感的准确性和鲁棒性,最终克服了这个问题。概念“地图容器”表示地图是将所有信息转换为地图坐标空间的平台,并将不同的信息源合并到分布式融合体系结构中。在拟议的MAP容器中,考虑使用GNSS信号和传感器功能和地图功能之间的匹配关系以优化环境状态的估计。对仿真数据集和房地车平台的评估结果验证了所提出的方法的有效性。
translated by 谷歌翻译
基于神经网络的驾驶规划师在改善自动驾驶的任务绩效方面表现出了巨大的承诺。但是,确保具有基于神经网络的组件的系统的安全性,尤其是在密集且高度交互式的交通环境中,这是至关重要的,但又具有挑战性。在这项工作中,我们为基于神经网络的车道更改提出了一个安全驱动的互动计划框架。为了防止过度保守计划,我们确定周围车辆的驾驶行为并评估其侵略性,然后以互动方式相应地适应了计划的轨迹。如果在预测的最坏情况下,即使存在安全的逃避轨迹,则自我车辆可以继续改变车道;否则,它可以停留在当前的横向位置附近或返回原始车道。我们通过广泛而全面的实验环境以及在自动驾驶汽车公司收集的现实情况下进行了广泛的模拟,定量证明了计划者设计的有效性及其优于基线方法的优势。
translated by 谷歌翻译
Multi-modal fusion is a basic task of autonomous driving system perception, which has attracted many scholars' interest in recent years. The current multi-modal fusion methods mainly focus on camera data and LiDAR data, but pay little attention to the kinematic information provided by the bottom sensors of the vehicle, such as acceleration, vehicle speed, angle of rotation. These information are not affected by complex external scenes, so it is more robust and reliable. In this paper, we introduce the existing application fields of vehicle bottom information and the research progress of related methods, as well as the multi-modal fusion methods based on bottom information. We also introduced the relevant information of the vehicle bottom information data set in detail to facilitate the research as soon as possible. In addition, new future ideas of multi-modal fusion technology for autonomous driving tasks are proposed to promote the further utilization of vehicle bottom information.
translated by 谷歌翻译
为连接和自动化车辆(CAVS)开发安全性和效率应用需要大量的测试和评估。在关键和危险情况下对这些系统运行的需求使他们的评估负担非常昂贵,可能危险且耗时。作为替代方案,研究人员试图使用仿真平台研究和评估其算法和设计。建模驾驶员或人类操作员在骑士或其他与他们相互作用的车辆中的行为是此类模拟的主要挑战之一。虽然为人类行为开发完美的模型是一项具有挑战性的任务和一个开放的问题,但我们展示了用于驾驶员行为的模拟器中当前模型的显着增强。在本文中,我们为混合运输系统提供了一个模拟平台,其中包括人类驱动和自动化车辆。此外,我们分解了人类驾驶任务,并提供了模拟大规模交通情况的模块化方法,从而可以彻底研究自动化和主动的安全系统。通过互连模块的这种表示形式提供了一个可以调节的人解剖系统,以代表不同类别的驱动程序。此外,我们分析了一个大型驾驶数据集以提取表达参数,以最好地描述不同的驾驶特性。最后,我们在模拟器中重新创建了类似密集的交通情况,并对各种人类特异性和系统特异性因素进行了彻底的分析,研究了它们对交通网络性能和安全性的影响。
translated by 谷歌翻译
安全可靠的自治解决方案是下一代智能运输系统的关键组成部分。这种系统中的自动驾驶汽车必须实时考虑复杂而动态的驾驶场景,并预测附近驾驶员的行为。人类驾驶行为非常细微,对个别交通参与者具有特殊性。例如,在合并车辆的情况下,驾驶员可能会显示合作或非合作行为。这些行为必须估算并纳入安全有效驾驶的计划过程中。在这项工作中,我们提出了一个框架,用于估计高速公路上驾驶员的合作水平,并计划将动作与驾驶员的潜在行为合并。潜在参数估计问题使用粒子滤波器解决,以近似合作级别的概率分布。包括潜在状态估算的部分可观察到的马尔可夫决策过程(POMDP)在线解决,以提取合并车辆的政策。我们在高保真汽车模拟器中评估我们的方法,以对潜在状态不可知或依赖于$ \ textit {a先验{先验} $假设。
translated by 谷歌翻译
然而,由于各种交通/道路结构方案以及人类驾驶员行为的长时间分布,自动驾驶的感应,感知和本地化取得了重大进展,因此,对于智能车辆来说,这仍然是一个持开放态度的挑战始终知道如何在有可用的传感 /感知 /本地化信息的道路上做出和执行最佳决定。在本章中,我们讨论了人工智能,更具体地说,强化学习如何利用运营知识和安全反射来做出战略性和战术决策。我们讨论了一些与强化学习解决方案的鲁棒性及其对自动驾驶驾驶策略的实践设计有关的具有挑战性的问题。我们专注于在高速公路上自动驾驶以及增强学习,车辆运动控制和控制屏障功能的整合,从而实现了可靠的AI驾驶策略,可以安全地学习和适应。
translated by 谷歌翻译
我们解决了由具有不同驱动程序行为的道路代理人填充的密集模拟交通环境中的自我车辆导航问题。由于其异构行为引起的代理人的不可预测性,这种环境中的导航是挑战。我们提出了一种新的仿真技术,包括丰富现有的交通模拟器,其具有与不同程度的侵略性程度相对应的行为丰富的轨迹。我们在驾驶员行为建模算法的帮助下生成这些轨迹。然后,我们使用丰富的模拟器培训深度加强学习(DRL)策略,包括一组高级车辆控制命令,并在测试时间使用此策略来执行密集流量的本地导航。我们的政策隐含地模拟了交通代理商之间的交互,并计算了自助式驾驶员机动,例如超速,超速,编织和突然道路变化的激进驾驶员演习的安全轨迹。我们增强的行为丰富的模拟器可用于生成由对应于不同驱动程序行为和流量密度的轨迹组成的数据集,我们的行为的导航方案可以与最先进的导航算法相结合。
translated by 谷歌翻译
我们考虑在微观级别的坡道计量,但受车辆安全限制的约束。交通网络由带有多个在越野和外坡道的环路抽象。车辆到达坡道的到达时间及其目的地外坡道是由外源随机过程建模的。一旦车辆从坡道上释放出来,如果没有另一辆车阻塞,它就会加速自由流速。一旦它靠近另一辆车,便会采用安全的行为。车辆到达目的地外坡道后,车辆将退出交通网络。我们设计流量响应的坡道计量策略,以最大程度地提高网络的饱和区域。策略的饱和区域定义为一组需求,即到达率和路由矩阵,所有坡道的队列长度都在预期中保持限制。提出的坡道计量策略是在同步循环下运行的,在此期间,坡道在周期开始时不会释放更多的车辆长度。我们提供三个策略,分别在周期结束时分别暂停每个坡度(i)暂停时间间隔,或(ii)在周期内调节释放率,或(iii)采用保守的安全性在周期中释放的标准。但是,所有政策都不需要有关需求的信息。这些策略的饱和区域的特征是研究诱导的马尔可夫链的随机稳定性,当所有坡道的合并速度等于自由流速时,被证明是最大的。提供模拟以说明政策的性能。
translated by 谷歌翻译
自动驾驶汽车的一个主要挑战是安全,平稳地与其他交通参与者进行互动。处理此类交通交互的一种有希望的方法是为自动驾驶汽车配备与感知的控制器(IACS)。这些控制器预测,周围人类驾驶员将如何根据驾驶员模型对自动驾驶汽车的行为做出响应。但是,很少验证IACS中使用的驱动程序模型的预测有效性,这可能会限制IACS在简单的模拟环境之外的交互功能。在本文中,我们认为,除了评估IAC的互动能力外,还应在自然的人类驾驶行为上验证其潜在的驱动器模型。我们为此验证提出了一个工作流程,其中包括基于方案的数据提取和基于人为因素文献的两阶段(战术/操作)评估程序。我们在一项案例研究中证明了该工作流程,该案例研究对现有IAC复制的基于反向的基于学习的驱动程序模型。该模型仅在40%的预测中显示出正确的战术行为。该模型的操作行为与观察到的人类行为不一致。案例研究表明,有原则的评估工作流程是有用和需要的。我们认为,我们的工作流将支持为将来的自动化车辆开发适当的驾驶员模型。
translated by 谷歌翻译
研究表明,自治车辆(AVS)在由人类驱动因素组成的交通环境中保守,不适应当地条件和社会文化规范。众所周知,如果存在理解人类驱动程序的行为,则可以设计社会意识的AVS。我们提出了一种利用机器学习来预测人类驱动程序的行为的方法。这类似于人类如何隐含地解释道路上司机的行为,只能观察其车辆的轨迹。我们使用图形理论工具从轨迹和机器学习中提取驾驶员行为特征,以在流量和驾驶员行为中获得车辆的提取轨迹之间的计算映射。与此域中的现有方法相比,我们证明我们的方法是强大的,一般的,并且可扩展到广泛的应用程序,如自主导航。我们评估我们在美国,印度,中国和新加坡捕获的现实世界交通数据集以及模拟中的方法。
translated by 谷歌翻译