混乱场景中的物体操纵是机器人技术中的一个困难和重要问题。为了有效地操纵物体,重要的是要了解它们的周围环境,尤其是在将一个物体堆叠在另一个物体的情况下,以防止有效抓握。我们在这里提出Duqim-Net,这是一种在堆叠对象的设置中进行对象操作的决策方法。在DUQIM-NET中,使用Adj-Net评估层次堆叠关系,该模型通过添加邻接头来利用现有的变压器编码器编码器对象检测器。该头部的输出概率地渗透了场景中对象的基础层次结构。我们利用DUQIM-NET中的邻接矩阵的属性来执行决策并协助对象抓任务。我们的实验结果表明,ADJ-NET超过了视觉操作关系数据集(VMRD)的对象关系推断的最新技术,并且DUQIM-NET在bin清除任务中的表现优于可比的方法。
translated by 谷歌翻译
当代掌握检测方法采用深度学习,实现传感器和物体模型不确定性的鲁棒性。这两个主导的方法设计了掌握质量评分或基于锚的掌握识别网络。本文通过将其视为图像空间中的关键点检测来掌握掌握检测的不同方法。深网络检测每个掌握候选者作为一对关键点,可转换为掌握代表= {x,y,w,{\ theta}} t,而不是转角点的三态或四重奏。通过将关键点分组成对来降低检测难度提高性能。为了促进捕获关键点之间的依赖关系,将非本地模块结合到网络设计中。基于离散和连续定向预测的最终过滤策略消除了错误的对应关系,并进一步提高了掌握检测性能。此处提出的方法GKNET在康奈尔和伸缩的提花数据集上的精度和速度之间实现了良好的平衡(在41.67和23.26 fps的96.9%和98.39%)之间。操纵器上的后续实验使用4种类型的抓取实验来评估GKNet,反映不同滋扰的速度:静态抓握,动态抓握,在各种相机角度抓住,夹住。 GKNet优于静态和动态掌握实验中的参考基线,同时表现出变化的相机观点和中度杂波的稳健性。结果证实了掌握关键点是深度掌握网络的有效输出表示的假设,为预期的滋扰因素提供鲁棒性。
translated by 谷歌翻译
在以人为本的环境中工作的机器人需要知道场景中存在哪种物体,以及如何掌握和操纵不同情况下的各种对象,以帮助人类在日常任务中。因此,对象识别和抓握是此类机器人的两个关键功能。最先进的解决物体识别并将其抓握为两个单独的问题,同时都使用可视输入。此外,在训练阶段之后,机器人的知识是固定的。在这种情况下,如果机器人面临新的对象类别,则必须从划痕中重新培训以结合新信息而无需灾难性干扰。为了解决这个问题,我们提出了一个深入的学习架构,具有增强的存储器能力来处理开放式对象识别和同时抓握。特别地,我们的方法将物体的多视图作为输入,并共同估计像素 - 方向掌握配置以及作为输出的深度和旋转不变表示。然后通过元主动学习技术使用所获得的表示用于开放式对象识别。我们展示了我们掌握从未见过的对象的方法的能力,并在模拟和现实世界中使用非常少数的例子在现场使用很少的例子快速学习新的对象类别。
translated by 谷歌翻译
如今,机器人在我们的日常生活中起着越来越重要的作用。在以人为本的环境中,机器人经常会遇到成堆的对象,包装的项目或孤立的对象。因此,机器人必须能够在各种情况下掌握和操纵不同的物体,以帮助人类进行日常任务。在本文中,我们提出了一种多视图深度学习方法,以处理以人为中心的域中抓住强大的对象。特别是,我们的方法将任意对象的点云作为输入,然后生成给定对象的拼字图。获得的视图最终用于估计每个对象的像素抓握合成。我们使用小对象抓住数据集训练模型端到端,并在模拟和现实世界数据上对其进行测试,而无需进行任何进一步的微调。为了评估所提出方法的性能,我们在三种情况下进行了广泛的实验集,包括孤立的对象,包装的项目和一堆对象。实验结果表明,我们的方法在所有仿真和现实机器人方案中都表现出色,并且能够在各种场景配置中实现新颖对象的可靠闭环抓握。
translated by 谷歌翻译
实时机器人掌握,支持随后的精确反对操作任务,是高级高级自治系统的优先目标。然而,尚未找到这样一种可以用时间效率进行充分准确的掌握的算法。本文提出了一种新的方法,其具有2阶段方法,它使用深神经网络结合快速的2D对象识别,以及基于点对特征框架的随后的精确和快速的6D姿态估计来形成实时3D对象识别和抓握解决方案能够多对象类场景。所提出的解决方案有可能在实时应用上稳健地进行,需要效率和准确性。为了验证我们的方法,我们进行了广泛且彻底的实验,涉及我们自己的数据集的费力准备。实验结果表明,该方法在5CM5DEG度量标准中的精度97.37%,平均距离度量分数99.37%。实验结果显示了通过使用该方法的总体62%的相对改善(5cm5deg度量)和52.48%(平均距离度量)。此外,姿势估计执行也显示出运行时间的平均改善47.6%。最后,为了说明系统在实时操作中的整体效率,进行了一个拾取和放置的机器人实验,并显示了90%的准确度的令人信服的成功率。此实验视频可在https://sites.google.com/view/dl-ppf6dpose/上获得。
translated by 谷歌翻译
6多机器人抓钩是一个持久但未解决的问题。最近的方法利用强3D网络从深度传感器中提取几何抓握表示形式,表明对公共物体的准确性卓越,但对光度化挑战性物体(例如,透明或反射材料中的物体)进行不满意。瓶颈在于这些物体的表面由于光吸收或折射而无法反射准确的深度。在本文中,与利用不准确的深度数据相反,我们提出了第一个称为MonograspNet的只有RGB的6-DOF握把管道,该管道使用稳定的2D特征同时处理任意对象抓握,并克服由光学上具有挑战性挑战的对象引起的问题。 MonograspNet利用关键点热图和正常地图来恢复由我们的新型表示形式表示的6-DOF抓握姿势,该表示的2D键盘具有相应的深度,握把方向,抓握宽度和角度。在真实场景中进行的广泛实验表明,我们的方法可以通过在抓住光学方面挑战的对象方面抓住大量对象并超过基于深度的竞争者的竞争成果。为了进一步刺激机器人的操纵研究,我们还注释并开源一个多视图和多场景现实世界抓地数据集,其中包含120个具有20m精确握把标签的混合光度复杂性对象。
translated by 谷歌翻译
Grasp learning has become an exciting and important topic in robotics. Just a few years ago, the problem of grasping novel objects from unstructured piles of clutter was considered a serious research challenge. Now, it is a capability that is quickly becoming incorporated into industrial supply chain automation. How did that happen? What is the current state of the art in robotic grasp learning, what are the different methodological approaches, and what machine learning models are used? This review attempts to give an overview of the current state of the art of grasp learning research.
translated by 谷歌翻译
尽管在机器人抓住方面取得了令人印象深刻的进展,但机器人在复杂的任务中不熟练(例如,在杂乱中搜索并掌握指定的目标)。这些任务不仅涉及抓住,而是对世界的全面感知(例如,对象关系)。最近,令人鼓舞的结果表明,可以通过学习来理解高级概念。然而,这种算法通常是数据密集型的,并且缺乏数据严重限制了它们的性能。在本文中,我们提出了一个名为Reactad的新数据集,用于学习物体和掌握之间的关系。我们收集对象姿势,分段,掌握和目标驱动的关系掌握任务的关系。我们的数据集以2D图像和3D点云的两种形式收集。此外,由于所有数据都会自动生成,因此可以自由地导入数据生成的新对象。我们还发布了一个真实的验证数据集,以评估模型的SIM-to-Real性能,这些模型正在接受重新研磨的模型。最后,我们进行了一系列的实验,表明,根据关系和掌握检测,培训的模型可以概括到现实场景。我们的数据集和代码可以在:https://github.com/poisonwine/gerad
translated by 谷歌翻译
在本文中,我们提出了操纵关系图(MRG),这是一种小型可供表现,它捕获了任意场景的底层操纵关系。要从原始视觉观察构建此类图,介绍了名为AR-Net的深形环境网络。它由属性模块和上下文模块组成,该上下文模块分别指导对象和子图水平的关系学习。我们在名为SMRD的新颖操作关系数据集中定量验证了我们的方法。为了评估所提出的模型和表示的性能,进行视觉感知和物理操纵实验。总体而言,AR-NET与MRG优于所有基线,在任务完成(TR)的任务关系识别(TRR)上取得88.89%的成功率(TRR)和73.33%
translated by 谷歌翻译
鉴于问题的复杂性,从各种传感器模式到高度纠缠的对象布局,再到多样化的项目属性和抓地力类型,因此对视觉驱动的机器人系统提出了重大挑战。现有方法通常从一个角度解决问题。各种项目和复杂的垃圾箱场景需要多种选择策略以及高级推理。因此,要构建可靠的机器学习算法来解决这项复杂的任务,需要大量的全面和高质量的数据。在现实世界中收集此类数据将太昂贵,时间过高,因此从可伸缩性角度来看。为了解决这个大型,多样化的数据问题,我们从最近的元素概念上的增长中获得了灵感,并引入了MetagraspNet,这是一种通过基于物理学的元合成构建的大规模的照片现实垃圾箱挑选数据集。所提出的数据集在82种不同的文章类型上包含217K RGBD图像,并具有完整的注释,可用于对象检测,Amodal感知,关键点检测,操纵顺序和平行jaw和真空吸尘器的Ambidextrous Grasp标签。我们还提供了一个真实的数据集,该数据集由超过2.3k全面注释的高质量RGBD图像组成,分为5个困难级别和一个看不见的对象,以评估不同的对象和布局属性。最后,我们进行了广泛的实验,表明我们提出的真空密封模型和合成数据集实现了最先进的性能,并将其推广到现实世界用例。
translated by 谷歌翻译
智能服务机器人需要能够在动态环境中执行各种任务。尽管在机器人抓住方面取得了重大进展,但机器人在非结构化的现实环境中给出不同的任务时,机器人可以决定掌握位置仍然是一项挑战。为了克服这一挑战,创建一个正确的知识表示框架是关键。与以前的工作不同,在本文中,任务定义为三联体,包括掌握工具,所需的动作和目标对象。我们所提出的算法给予(掌握 - Action-Target Embeddings和关系)模型掌握工具之间的关系 - 嵌入空间中的目标对象 - 目标对象。要验证我们的方法,为特定于任务的GRASPing创建了一种新型数据集。给予新数据集的培训,并实现特定于任务的掌握推理,以94.6%的成功率。最后,在真正的服务机器人平台上测试了等级算法的有效性。等级算法在人类行为预测和人机互动中具有潜力。
translated by 谷歌翻译
高分辨率表示对于基于视觉的机器人抓问题很重要。现有作品通常通过子网络将输入图像编码为低分辨率表示形式,然后恢复高分辨率表示。这将丢失空间信息,当考虑多种类型的对象或远离摄像机时,解码器引入的错误将更加严重。为了解决这些问题,我们重新审视了CNN的设计范式,以实现机器人感知任务。我们证明,与串行堆叠的卷积层相反,使用平行分支将是机器人视觉抓握任务的更强大设计。特别是,为机器人感知任务(例如,高分辨率代表和轻量级设计)提供了神经网络设计的准则,这些指南应对不同操纵场景中的挑战做出回应。然后,我们开发了一种新颖的抓地视觉体系结构,称为HRG-NET,这是一种平行分支结构,始终保持高分辨率表示形式,并反复在分辨率上交换信息。广泛的实验验证了这两种设计可以有效地提高基于视觉的握把和加速网络训练的准确性。我们在YouTube上的真实物理环境中显示了一系列比较实验:https://youtu.be/jhlsp-xzhfy。
translated by 谷歌翻译
抓握是通过在一组触点上施加力和扭矩来挑选对象的过程。深度学习方法的最新进展允许在机器人对象抓地力方面快速进步。我们在过去十年中系统地调查了出版物,特别感兴趣使用最终效果姿势的所有6度自由度抓住对象。我们的综述发现了四种用于机器人抓钩的常见方法:基于抽样的方法,直接回归,强化学习和示例方法。此外,我们发现了围绕抓握的两种“支持方法”,这些方法使用深入学习来支持抓握过程,形状近似和负担能力。我们已经将本系统评论(85篇论文)中发现的出版物提炼为十个关键要点,我们认为对未来的机器人抓握和操纵研究至关重要。该调查的在线版本可从https://rhys-newbury.github.io/projects/6dof/获得
translated by 谷歌翻译
当前的NLP技术已在不同的域中极大地应用。在本文中,我们提出了一个在杂乱无章的场景中机器人抓握的人类框架,调查了掌握过程的语言接口,该框架使用户可以通过自然语言命令进行干预。该框架是在最先进的ras基线基线上构建的,在那里我们使用bert代替场景图表代表场景的文本表示。对模拟和物理机器人的实验表明,所提出的方法在文献中优于基于对象敏捷和场景图的常规方法。此外,我们发现,通过人类干预,绩效可以大大提高。
translated by 谷歌翻译
在本文中,我们提出了一种新的深度神经网络架构,用于联合类禁止对象分割和使用平行板夹持器的机器人拾取任务的掌握检测。我们引入深度感知的坐标卷积(CoordConv),一种方法来提高基于点提案的对象实例分段精度,在复杂的场景中不添加任何其他网络参数或计算复杂性。深度感知CoordConv使用深度数据来提取有关对象位置的先前信息以实现高度准确的对象实例分段。这些产生的分割掩模与预测的掌握候选者组合,导致使用平行板夹具抓住的完整场景描述。我们评估掌握检测和实例分割对具有挑战性机器人拣选数据集的准确性,即SIL \'EANE和OCID_GRASP,并展示了在真实世界机器人采摘任务上的联合掌握检测和分割的益处。
translated by 谷歌翻译
在非结构化环境中,使用看不见的对象进行实例分割是一个具有挑战性的问题。为了解决这个问题,我们提出了一种机器人学习方法,以积极与新对象进行互动,并收集每个对象的训练标签,以进一步进行微调以提高细分模型的性能,同时避免手动标记数据集的耗时过程。通过端到端的强化学习对奇异和抓斗(SAG)政策进行培训。考虑到一堆混乱的对象,我们的方法选择推动和抓住动作来打破混乱并进行对象不合时宜的抓握,而SAG策略则将其作为输入视觉观察和不完善的分割。我们将问题分解为三个子任务:(1)对象singulation子任务旨在将对象彼此分开,从而产生更多的空间,从而减轻了(2)无碰撞抓握子任务的难度; (3)通过使用基于光流的二进制分类器和运动提示后处理进行传输学习,掩盖生成子任务以获得自标记的地面真相蒙版。我们的系统在模拟的混乱场景中达到了70%的单次成功率。我们系统的交互式分割可实现87.8%,73.9%和69.3%的玩具块,模拟中的YCB对象和现实世界中的新颖对象的平均精度,这表现优于几个基准。
translated by 谷歌翻译
机器人经常面临抓住目标对象的情况,但由于其他当前物体阻止了掌握动作。我们提出了一种深入的强化学习方法,以学习掌握和推动政策,以在高度混乱的环境中操纵目标对象以解决这个问题。特别是,提出了双重强化学习模型方法,该方法在处理复杂场景时具有很高的弹性,在模拟环境中使用原始对象平均达到98%的任务完成。为了评估所提出方法的性能,我们在包装对象和一堆对象方案中进行了两组实验集,在模拟中总共进行了1000个测试。实验结果表明,该提出的方法在各种情况下都效果很好,并且表现出了最新的最新方法。演示视频,训练有素的模型和源代码可重复可重复性目的。 https://github.com/kamalnl92/self-superist-learning-for-pushing-and-grasping。
translated by 谷歌翻译
本文介绍了一种从原始RGB-D视频进行任务演示的视频中学习类别级别的新技术,没有手动标签或注释。类别级的学习旨在获取可以推广到新对象的技能,其几何形状和纹理与演示中使用的对象不同。我们通过首先将抓地力和操作视为工具使用的特殊情况,解决此问题,其中工具对象被移至目标对象的参考框架中定义的一系列键置。使用动态图卷积神经网络预测工具和目标对象以及其钥匙置,该网络将整个场景的自动分割深度和颜色图像作为输入。具有真实机器人手臂的对象操纵任务上的经验结果表明,所提出的网络可以有效地从真实的视觉演示中学习,以在同一类别内的新颖对象上执行任务,并且优于替代方法。
translated by 谷歌翻译
同时对象识别和姿势估计是机器人安全与人类和环境安全相互作用的两个关键功能。尽管对象识别和姿势估计都使用视觉输入,但大多数最先进的问题将它们作为两个独立的问题解决,因为前者需要视图不变的表示,而对象姿势估计需要一个与观点有关的描述。如今,多视图卷积神经网络(MVCNN)方法显示出最新的分类性能。尽管已广泛探索了MVCNN对象识别,但对多视图对象构成估计方法的研究很少,而同时解决这两个问题的研究更少。 MVCNN方法中虚拟摄像机的姿势通常是预先定义的,从而绑定了这种方法的应用。在本文中,我们提出了一种能够同时处理对象识别和姿势估计的方法。特别是,我们开发了一个深度的对象不合时宜的熵估计模型,能够预测给定3D对象的最佳观点。然后将对象的视图馈送到网络中,以同时预测目标对象的姿势和类别标签。实验结果表明,从此类位置获得的观点足以达到良好的精度得分。此外,我们设计了现实生活中的饮料场景,以证明拟议方法在真正的机器人任务中的运作效果如何。代码可在线获得:github.com/subhadityamukherjee/more_mvcnn
translated by 谷歌翻译
根据目标的语义信息,减少抓取检测的范围对于提高抓取检测模型的准确性并扩大其应用。研究人员一直在尝试将这些能力与端到端网络中的这些功能相结合,以有效地掌握杂乱场景中的特定对象。在本文中,我们提出了一种端到端语义抓握检测模型,可以实现语义识别和掌握检测。我们还设计了一个目标要素过滤机制,其仅根据用于抓取检测的语义信息维护单个对象的特征。该方法有效地减少了与目标对象弱相关的背景特征,从而使得具有更独特的功能并保证抓取检测的准确性和效率。实验结果表明,该方法在康奈尔抓地数据集中可以实现98.38%的精度,我们对不同数据集或评估度量的结果显示了我们对最先进的方法的域适应性。
translated by 谷歌翻译