根据目标的语义信息,减少抓取检测的范围对于提高抓取检测模型的准确性并扩大其应用。研究人员一直在尝试将这些能力与端到端网络中的这些功能相结合,以有效地掌握杂乱场景中的特定对象。在本文中,我们提出了一种端到端语义抓握检测模型,可以实现语义识别和掌握检测。我们还设计了一个目标要素过滤机制,其仅根据用于抓取检测的语义信息维护单个对象的特征。该方法有效地减少了与目标对象弱相关的背景特征,从而使得具有更独特的功能并保证抓取检测的准确性和效率。实验结果表明,该方法在康奈尔抓地数据集中可以实现98.38%的精度,我们对不同数据集或评估度量的结果显示了我们对最先进的方法的域适应性。
translated by 谷歌翻译
高分辨率表示对于基于视觉的机器人抓问题很重要。现有作品通常通过子网络将输入图像编码为低分辨率表示形式,然后恢复高分辨率表示。这将丢失空间信息,当考虑多种类型的对象或远离摄像机时,解码器引入的错误将更加严重。为了解决这些问题,我们重新审视了CNN的设计范式,以实现机器人感知任务。我们证明,与串行堆叠的卷积层相反,使用平行分支将是机器人视觉抓握任务的更强大设计。特别是,为机器人感知任务(例如,高分辨率代表和轻量级设计)提供了神经网络设计的准则,这些指南应对不同操纵场景中的挑战做出回应。然后,我们开发了一种新颖的抓地视觉体系结构,称为HRG-NET,这是一种平行分支结构,始终保持高分辨率表示形式,并反复在分辨率上交换信息。广泛的实验验证了这两种设计可以有效地提高基于视觉的握把和加速网络训练的准确性。我们在YouTube上的真实物理环境中显示了一系列比较实验:https://youtu.be/jhlsp-xzhfy。
translated by 谷歌翻译
在本文中,我们提出了一种新的深度神经网络架构,用于联合类禁止对象分割和使用平行板夹持器的机器人拾取任务的掌握检测。我们引入深度感知的坐标卷积(CoordConv),一种方法来提高基于点提案的对象实例分段精度,在复杂的场景中不添加任何其他网络参数或计算复杂性。深度感知CoordConv使用深度数据来提取有关对象位置的先前信息以实现高度准确的对象实例分段。这些产生的分割掩模与预测的掌握候选者组合,导致使用平行板夹具抓住的完整场景描述。我们评估掌握检测和实例分割对具有挑战性机器人拣选数据集的准确性,即SIL \'EANE和OCID_GRASP,并展示了在真实世界机器人采摘任务上的联合掌握检测和分割的益处。
translated by 谷歌翻译
The accurate detection and grasping of transparent objects are challenging but of significance to robots. Here, a visual-tactile fusion framework for transparent object grasping under complex backgrounds and variant light conditions is proposed, including the grasping position detection, tactile calibration, and visual-tactile fusion based classification. First, a multi-scene synthetic grasping dataset generation method with a Gaussian distribution based data annotation is proposed. Besides, a novel grasping network named TGCNN is proposed for grasping position detection, showing good results in both synthetic and real scenes. In tactile calibration, inspired by human grasping, a fully convolutional network based tactile feature extraction method and a central location based adaptive grasping strategy are designed, improving the success rate by 36.7% compared to direct grasping. Furthermore, a visual-tactile fusion method is proposed for transparent objects classification, which improves the classification accuracy by 34%. The proposed framework synergizes the advantages of vision and touch, and greatly improves the grasping efficiency of transparent objects.
translated by 谷歌翻译
机器人武器广泛用于自动行业。但是,随着在机器人臂中深入学习的广泛应用,存在新的挑战,例如分配掌握计算能力和对安全性的需求不断增长。在这项工作中,我们提出了一种基于深度学习和边缘云协作的机器人手臂抓握方法。这种方法意识到了机器人组的任意掌握计划,并考虑了掌握效率和信息安全性。此外,由GAN训练的编码器和解码器使图像在压缩时可以加密,从而确保隐私的安全性。该模型在OCID数据集上达到92%的精度,图像压缩比达到0.03%,结构差值高于0.91。
translated by 谷歌翻译
对于机器人来说,在混乱的场景中抓住检测是一项非常具有挑战性的任务。生成合成抓地数据是训练和测试抓握方法的流行方式,DEX-NET和GRASPNET也是如此。然而,这些方法在3D合成对象模型上生成了训练掌握,但是在具有不同分布的图像或点云上进行评估,从而降低了由于稀疏的掌握标签和协变量移位而在真实场景上的性能。为了解决现有的问题,我们提出了一种新型的policy抓取检测方法,该方法可以用RGB-D图像生成的密集像素级抓握标签对相同的分布进行训练和测试。提出了一种并行深度的掌握生成(PDG生成)方法,以通过并行的投射点的新成像模型生成平行的深度图像;然后,该方法为每个像素生成多个候选抓地力,并通过平坦检测,力闭合度量和碰撞检测获得可靠的抓地力。然后,构建并释放了大型综合像素级姿势数据集(PLGP数据集)。该数据集使用先前的数据集和稀疏的Grasp样品区分开,是第一个像素级掌握数据集,其上的分布分布基于深度图像生成了grasps。最后,我们建立和测试了一系列像素级的抓地力检测网络,并通过数据增强过程进行不平衡训练,该过程以输入RGB-D图像的方式学习抓握姿势。广泛的实验表明,我们的policy掌握方法可以在很大程度上克服模拟与现实之间的差距,并实现最新的性能。代码和数据可在https://github.com/liuchunsense/plgp-dataset上提供。
translated by 谷歌翻译
在本文中,我们提出了一个基于变压器的架构,即TF-Grasp,用于机器人Grasp检测。开发的TF-Grasp框架具有两个精心设计的设计,使其非常适合视觉抓握任务。第一个关键设计是,我们采用本地窗口的注意来捕获本地上下文信息和可抓取对象的详细特征。然后,我们将跨窗户注意力应用于建模遥远像素之间的长期依赖性。对象知识,环境配置和不同视觉实体之间的关系汇总以进行后续的掌握检测。第二个关键设计是,我们构建了具有跳过连接的层次编码器架构,从编码器到解码器提供了浅特征,以启用多尺度功能融合。由于具有强大的注意力机制,TF-Grasp可以同时获得局部信息(即对象的轮廓),并建模长期连接,例如混乱中不同的视觉概念之间的关系。广泛的计算实验表明,TF-GRASP在康奈尔(Cornell)和雅克(Jacquard)握把数据集上分别获得了较高的结果与最先进的卷积模型,并获得了97.99%和94.6%的较高精度。使用7DOF Franka Emika Panda机器人进行的现实世界实验也证明了其在各种情况下抓住看不见的物体的能力。代码和预培训模型将在https://github.com/wangshaosun/grasp-transformer上找到
translated by 谷歌翻译
6多机器人抓钩是一个持久但未解决的问题。最近的方法利用强3D网络从深度传感器中提取几何抓握表示形式,表明对公共物体的准确性卓越,但对光度化挑战性物体(例如,透明或反射材料中的物体)进行不满意。瓶颈在于这些物体的表面由于光吸收或折射而无法反射准确的深度。在本文中,与利用不准确的深度数据相反,我们提出了第一个称为MonograspNet的只有RGB的6-DOF握把管道,该管道使用稳定的2D特征同时处理任意对象抓握,并克服由光学上具有挑战性挑战的对象引起的问题。 MonograspNet利用关键点热图和正常地图来恢复由我们的新型表示形式表示的6-DOF抓握姿势,该表示的2D键盘具有相应的深度,握把方向,抓握宽度和角度。在真实场景中进行的广泛实验表明,我们的方法可以通过在抓住光学方面挑战的对象方面抓住大量对象并超过基于深度的竞争者的竞争成果。为了进一步刺激机器人的操纵研究,我们还注释并开源一个多视图和多场景现实世界抓地数据集,其中包含120个具有20m精确握把标签的混合光度复杂性对象。
translated by 谷歌翻译
现场机器人收获是农业产业近期发展的有希望的技术。在自然果园收获之前,机器人识别和本地化水果至关重要。然而,果园中收获机器人的工作空间很复杂:许多水果被分支和叶子堵塞。在执行操纵之前,估计每个果实的适当抓握姿势是很重要的。在本研究中,建议使用来自RGB-D相机的颜色和几何感官数据来执行端到端实例分段和掌握估计的几何意识网络A3N。此外,应用了工作区几何建模以帮助机器人操纵。此外,我们实施全球到本地扫描策略,它使机器人能够在具有两个消费级RGB-D相机中准确地识别和检索现场环境中的水果。我们还全面评估了所提出的网络的准确性和鲁棒性。实验结果表明,A3N达到了0.873的实例分割精度,平均计算时间为35毫秒。掌握估计的平均准确性分别为0.61厘米,4.8美元,中心和方向分别为4.8美元。总的来说,利用全球到局部扫描和A3N的机器人系统实现了从现场收集实验中的70 \%-85 \%的收获量的成功率。
translated by 谷歌翻译
当代掌握检测方法采用深度学习,实现传感器和物体模型不确定性的鲁棒性。这两个主导的方法设计了掌握质量评分或基于锚的掌握识别网络。本文通过将其视为图像空间中的关键点检测来掌握掌握检测的不同方法。深网络检测每个掌握候选者作为一对关键点,可转换为掌握代表= {x,y,w,{\ theta}} t,而不是转角点的三态或四重奏。通过将关键点分组成对来降低检测难度提高性能。为了促进捕获关键点之间的依赖关系,将非本地模块结合到网络设计中。基于离散和连续定向预测的最终过滤策略消除了错误的对应关系,并进一步提高了掌握检测性能。此处提出的方法GKNET在康奈尔和伸缩的提花数据集上的精度和速度之间实现了良好的平衡(在41.67和23.26 fps的96.9%和98.39%)之间。操纵器上的后续实验使用4种类型的抓取实验来评估GKNet,反映不同滋扰的速度:静态抓握,动态抓握,在各种相机角度抓住,夹住。 GKNet优于静态和动态掌握实验中的参考基线,同时表现出变化的相机观点和中度杂波的稳健性。结果证实了掌握关键点是深度掌握网络的有效输出表示的假设,为预期的滋扰因素提供鲁棒性。
translated by 谷歌翻译
对于机器人来说,拾取透明的对象仍然是一项具有挑战性的任务。透明对象(例如反射和折射)的视觉属性使依赖相机传感的当前抓握方法无法检测和本地化。但是,人类可以通过首先观察其粗剖面,然后戳其感兴趣的区域以获得良好的抓握轮廓来很好地处理透明的物体。受到这一点的启发,我们提出了一个新颖的视觉引导触觉框架,以抓住透明的物体。在拟议的框架中,首先使用分割网络来预测称为戳戳区域的水平上部区域,在该区域中,机器人可以在该区域戳入对象以获得良好的触觉读数,同时导致对物体状态的最小干扰。然后,使用高分辨率胶触觉传感器进行戳戳。鉴于触觉阅读有所改善的当地概况,计划掌握透明物体的启发式掌握。为了减轻对透明对象的现实世界数据收集和标记的局限性,构建了一个大规模逼真的合成数据集。广泛的实验表明,我们提出的分割网络可以预测潜在的戳戳区域,平均平均精度(地图)为0.360,而视觉引导的触觉戳戳可以显着提高抓地力成功率,从38.9%到85.2%。由于其简单性,我们提出的方法也可以被其他力量或触觉传感器采用,并可以用于掌握其他具有挑战性的物体。本文中使用的所有材料均可在https://sites.google.com/view/tactilepoking上获得。
translated by 谷歌翻译
智能服务机器人需要能够在动态环境中执行各种任务。尽管在机器人抓住方面取得了重大进展,但机器人在非结构化的现实环境中给出不同的任务时,机器人可以决定掌握位置仍然是一项挑战。为了克服这一挑战,创建一个正确的知识表示框架是关键。与以前的工作不同,在本文中,任务定义为三联体,包括掌握工具,所需的动作和目标对象。我们所提出的算法给予(掌握 - Action-Target Embeddings和关系)模型掌握工具之间的关系 - 嵌入空间中的目标对象 - 目标对象。要验证我们的方法,为特定于任务的GRASPing创建了一种新型数据集。给予新数据集的培训,并实现特定于任务的掌握推理,以94.6%的成功率。最后,在真正的服务机器人平台上测试了等级算法的有效性。等级算法在人类行为预测和人机互动中具有潜力。
translated by 谷歌翻译
实时机器人掌握,支持随后的精确反对操作任务,是高级高级自治系统的优先目标。然而,尚未找到这样一种可以用时间效率进行充分准确的掌握的算法。本文提出了一种新的方法,其具有2阶段方法,它使用深神经网络结合快速的2D对象识别,以及基于点对特征框架的随后的精确和快速的6D姿态估计来形成实时3D对象识别和抓握解决方案能够多对象类场景。所提出的解决方案有可能在实时应用上稳健地进行,需要效率和准确性。为了验证我们的方法,我们进行了广泛且彻底的实验,涉及我们自己的数据集的费力准备。实验结果表明,该方法在5CM5DEG度量标准中的精度97.37%,平均距离度量分数99.37%。实验结果显示了通过使用该方法的总体62%的相对改善(5cm5deg度量)和52.48%(平均距离度量)。此外,姿势估计执行也显示出运行时间的平均改善47.6%。最后,为了说明系统在实时操作中的整体效率,进行了一个拾取和放置的机器人实验,并显示了90%的准确度的令人信服的成功率。此实验视频可在https://sites.google.com/view/dl-ppf6dpose/上获得。
translated by 谷歌翻译
这项工作提出了下一代人类机器人界面,只能通过视觉来推断和实现用户的操纵意图。具体而言,我们开发了一个集成了近眼跟踪和机器人操作的系统,以实现用户指定的操作(例如,抓取,拾取和位置等),在其中将视觉信息与人类的注意合并在一起,以创建为所需的映射机器人动作。为了实现视力指导的操纵,开发了一个头部安装的近眼跟踪设备,以实时跟踪眼球运动,以便可以确定用户的视觉注意力。为了提高抓地力性能,然后开发出基于变压器的GRASP模型。堆叠的变压器块用于提取层次特征,其中在每个阶段扩展了通道的体积,同时挤压了特征地图的分辨率。实验验证表明,眼球跟踪系统产生低的凝视估计误差,抓地力系统在多个握把数据集上产生有希望的结果。这项工作是基于凝视互动的辅助机器人的概念证明,该机器人具有巨大的希望,可以帮助老年人或上肢残疾在日常生活中。可在\ url {https://www.youtube.com/watch?v=yuz1hukyurm}上获得演示视频。
translated by 谷歌翻译
在密集的混乱中抓住是自动机器人的一项基本技能。但是,在混乱的情况下,拥挤性和遮挡造成了很大的困难,无法在没有碰撞的情况下产生有效的掌握姿势,这会导致低效率和高失败率。为了解决这些问题,我们提出了一个名为GE-GRASP的通用框架,用于在密集的混乱中用于机器人运动计划,在此,我们利用各种动作原始素来遮挡对象去除,并呈现发电机 - 评估器架构以避免空间碰撞。因此,我们的ge-grasp能够有效地抓住密集的杂物中的物体,并有希望的成功率。具体而言,我们定义了三个动作基础:面向目标的抓握,用于捕获,推动和非目标的抓握,以减少拥挤和遮挡。发电机有效地提供了参考空间信息的各种动作候选者。同时,评估人员评估了所选行动原始候选者,其中最佳动作由机器人实施。在模拟和现实世界中进行的广泛实验表明,我们的方法在运动效率和成功率方面优于杂乱无章的最新方法。此外,我们在现实世界中实现了可比的性能,因为在模拟环境中,这表明我们的GE-Grasp具有强大的概括能力。补充材料可在以下网址获得:https://github.com/captainwudaokou/ge-grasp。
translated by 谷歌翻译
6-DOF GRASP姿势检测多盖和多对象是智能机器人领域的挑战任务。为了模仿人类的推理能力来抓住对象,广泛研究了数据驱动的方法。随着大规模数据集的引入,我们发现单个物理度量通常会产生几个离散水平的掌握置信分数,这无法很好地区分数百万的掌握姿势并导致不准确的预测结果。在本文中,我们提出了一个混合物理指标来解决此评估不足。首先,我们定义一个新的度量标准是基于力闭合度量的,并通过对象平坦,重力和碰撞的测量来补充。其次,我们利用这种混合物理指标来产生精致的置信度评分。第三,为了有效地学习新的置信度得分,我们设计了一个称为平面重力碰撞抓氏(FGC-Graspnet)的多分辨率网络。 FGC-GRASPNET提出了多个任务的多分辨率特征学习体系结构,并引入了新的关节损失函数,从而增强了GRASP检测的平均精度。网络评估和足够的实际机器人实验证明了我们混合物理指标和FGC-GraspNet的有效性。我们的方法在现实世界中混乱的场景中达到了90.5 \%的成功率。我们的代码可在https://github.com/luyh20/fgc-graspnet上找到。
translated by 谷歌翻译
大多数最先进的实例级人类解析模型都采用了两阶段的基于锚的探测器,因此无法避免启发式锚盒设计和像素级别缺乏分析。为了解决这两个问题,我们设计了一个实例级人类解析网络,该网络在像素级别上无锚固且可解决。它由两个简单的子网络组成:一个用于边界框预测的无锚检测头和一个用于人体分割的边缘引导解析头。无锚探测器的头继承了像素样的优点,并有效地避免了对象检测应用中证明的超参数的敏感性。通过引入部分感知的边界线索,边缘引导的解析头能够将相邻的人类部分与彼此区分开,最多可在一个人类实例中,甚至重叠的实例。同时,利用了精炼的头部整合盒子级别的分数和部分分析质量,以提高解析结果的质量。在两个多个人类解析数据集(即CIHP和LV-MHP-V2.0)和一个视频实例级人类解析数据集(即VIP)上进行实验,表明我们的方法实现了超过全球级别和实例级别的性能最新的一阶段自上而下的替代方案。
translated by 谷歌翻译
尽管在机器人抓住方面取得了令人印象深刻的进展,但机器人在复杂的任务中不熟练(例如,在杂乱中搜索并掌握指定的目标)。这些任务不仅涉及抓住,而是对世界的全面感知(例如,对象关系)。最近,令人鼓舞的结果表明,可以通过学习来理解高级概念。然而,这种算法通常是数据密集型的,并且缺乏数据严重限制了它们的性能。在本文中,我们提出了一个名为Reactad的新数据集,用于学习物体和掌握之间的关系。我们收集对象姿势,分段,掌握和目标驱动的关系掌握任务的关系。我们的数据集以2D图像和3D点云的两种形式收集。此外,由于所有数据都会自动生成,因此可以自由地导入数据生成的新对象。我们还发布了一个真实的验证数据集,以评估模型的SIM-to-Real性能,这些模型正在接受重新研磨的模型。最后,我们进行了一系列的实验,表明,根据关系和掌握检测,培训的模型可以概括到现实场景。我们的数据集和代码可以在:https://github.com/poisonwine/gerad
translated by 谷歌翻译
Current learning-based robot grasping approaches exploit human-labeled datasets for training the models. However, there are two problems with such a methodology: (a) since each object can be grasped in multiple ways, manually labeling grasp locations is not a trivial task; (b) human labeling is biased by semantics. While there have been attempts to train robots using trial-and-error experiments, the amount of data used in such experiments remains substantially low and hence makes the learner prone to over-fitting. In this paper, we take the leap of increasing the available training data to 40 times more than prior work, leading to a dataset size of 50K data points collected over 700 hours of robot grasping attempts. This allows us to train a Convolutional Neural Network (CNN) for the task of predicting grasp locations without severe overfitting. In our formulation, we recast the regression problem to an 18way binary classification over image patches. We also present a multi-stage learning approach where a CNN trained in one stage is used to collect hard negatives in subsequent stages. Our experiments clearly show the benefit of using large-scale datasets (and multi-stage training) for the task of grasping. We also compare to several baselines and show state-of-the-art performance on generalization to unseen objects for grasping.
translated by 谷歌翻译
As the basis for prehensile manipulation, it is vital to enable robots to grasp as robustly as humans. In daily manipulation, our grasping system is prompt, accurate, flexible and continuous across spatial and temporal domains. Few existing methods cover all these properties for robot grasping. In this paper, we propose a new methodology for grasp perception to enable robots these abilities. Specifically, we develop a dense supervision strategy with real perception and analytic labels in the spatial-temporal domain. Additional awareness of objects' center-of-mass is incorporated into the learning process to help improve grasping stability. Utilization of grasp correspondence across observations enables dynamic grasp tracking. Our model, AnyGrasp, can generate accurate, full-DoF, dense and temporally-smooth grasp poses efficiently, and works robustly against large depth sensing noise. Embedded with AnyGrasp, we achieve a 93.3% success rate when clearing bins with over 300 unseen objects, which is comparable with human subjects under controlled conditions. Over 900 MPPH is reported on a single-arm system. For dynamic grasping, we demonstrate catching swimming robot fish in the water.
translated by 谷歌翻译