当代掌握检测方法采用深度学习,实现传感器和物体模型不确定性的鲁棒性。这两个主导的方法设计了掌握质量评分或基于锚的掌握识别网络。本文通过将其视为图像空间中的关键点检测来掌握掌握检测的不同方法。深网络检测每个掌握候选者作为一对关键点,可转换为掌握代表= {x,y,w,{\ theta}} t,而不是转角点的三态或四重奏。通过将关键点分组成对来降低检测难度提高性能。为了促进捕获关键点之间的依赖关系,将非本地模块结合到网络设计中。基于离散和连续定向预测的最终过滤策略消除了错误的对应关系,并进一步提高了掌握检测性能。此处提出的方法GKNET在康奈尔和伸缩的提花数据集上的精度和速度之间实现了良好的平衡(在41.67和23.26 fps的96.9%和98.39%)之间。操纵器上的后续实验使用4种类型的抓取实验来评估GKNet,反映不同滋扰的速度:静态抓握,动态抓握,在各种相机角度抓住,夹住。 GKNet优于静态和动态掌握实验中的参考基线,同时表现出变化的相机观点和中度杂波的稳健性。结果证实了掌握关键点是深度掌握网络的有效输出表示的假设,为预期的滋扰因素提供鲁棒性。
translated by 谷歌翻译
形状通知如何将对象掌握,无论是如何以及如何。因此,本文介绍了一种基于分割的架构,用于将用深度摄像机进行分解为多个基本形状的对象,以及用于机器人抓握的后处理管道。分段采用深度网络,称为PS-CNN,在具有6个类的原始形状和使用模拟引擎生成的合成数据上培训。每个原始形状都设计有参数化掌握家族,允许管道识别每个形状区域的多个掌握候选者。掌握是排序的排名,选择用于执行的第一个可行的。对于无任务掌握单个对象,该方法达到94.2%的成功率将其放置在顶部执行掌握方法中,与自上而下和SE(3)基础相比。涉及变量观点和杂波的其他测试展示了设置的鲁棒性。对于面向任务的掌握,PS-CNN实现了93.0%的成功率。总体而言,结果支持该假设,即在抓地管道内明确地编码形状原语应该提高掌握性能,包括无任务和任务相关的掌握预测。
translated by 谷歌翻译
抓握是通过在一组触点上施加力和扭矩来挑选对象的过程。深度学习方法的最新进展允许在机器人对象抓地力方面快速进步。我们在过去十年中系统地调查了出版物,特别感兴趣使用最终效果姿势的所有6度自由度抓住对象。我们的综述发现了四种用于机器人抓钩的常见方法:基于抽样的方法,直接回归,强化学习和示例方法。此外,我们发现了围绕抓握的两种“支持方法”,这些方法使用深入学习来支持抓握过程,形状近似和负担能力。我们已经将本系统评论(85篇论文)中发现的出版物提炼为十个关键要点,我们认为对未来的机器人抓握和操纵研究至关重要。该调查的在线版本可从https://rhys-newbury.github.io/projects/6dof/获得
translated by 谷歌翻译
从点云输入中的6-DOF GRASP学习中取得了巨大的成功,但是由于点集无秩序而引起的计算成本仍然是一个令人关注的问题。另外,我们从本文中的RGB-D输入中探讨了GRASP的生成。提出的解决方案Kepoint-GraspNet检测图像空间中Gripper Kepoint的投影,然后用PNP算法恢复SE(3)姿势。建立了基于原始形状和抓住家族的合成数据集来检查我们的想法。基于公制的评估表明,我们的方法在掌握建议的准确性,多样性和时间成本方面优于基准。最后,机器人实验显示出很高的成功率,证明了在现实世界应用中的想法的潜力。
translated by 谷歌翻译
Grasp learning has become an exciting and important topic in robotics. Just a few years ago, the problem of grasping novel objects from unstructured piles of clutter was considered a serious research challenge. Now, it is a capability that is quickly becoming incorporated into industrial supply chain automation. How did that happen? What is the current state of the art in robotic grasp learning, what are the different methodological approaches, and what machine learning models are used? This review attempts to give an overview of the current state of the art of grasp learning research.
translated by 谷歌翻译
实时机器人掌握,支持随后的精确反对操作任务,是高级高级自治系统的优先目标。然而,尚未找到这样一种可以用时间效率进行充分准确的掌握的算法。本文提出了一种新的方法,其具有2阶段方法,它使用深神经网络结合快速的2D对象识别,以及基于点对特征框架的随后的精确和快速的6D姿态估计来形成实时3D对象识别和抓握解决方案能够多对象类场景。所提出的解决方案有可能在实时应用上稳健地进行,需要效率和准确性。为了验证我们的方法,我们进行了广泛且彻底的实验,涉及我们自己的数据集的费力准备。实验结果表明,该方法在5CM5DEG度量标准中的精度97.37%,平均距离度量分数99.37%。实验结果显示了通过使用该方法的总体62%的相对改善(5cm5deg度量)和52.48%(平均距离度量)。此外,姿势估计执行也显示出运行时间的平均改善47.6%。最后,为了说明系统在实时操作中的整体效率,进行了一个拾取和放置的机器人实验,并显示了90%的准确度的令人信服的成功率。此实验视频可在https://sites.google.com/view/dl-ppf6dpose/上获得。
translated by 谷歌翻译
As the basis for prehensile manipulation, it is vital to enable robots to grasp as robustly as humans. In daily manipulation, our grasping system is prompt, accurate, flexible and continuous across spatial and temporal domains. Few existing methods cover all these properties for robot grasping. In this paper, we propose a new methodology for grasp perception to enable robots these abilities. Specifically, we develop a dense supervision strategy with real perception and analytic labels in the spatial-temporal domain. Additional awareness of objects' center-of-mass is incorporated into the learning process to help improve grasping stability. Utilization of grasp correspondence across observations enables dynamic grasp tracking. Our model, AnyGrasp, can generate accurate, full-DoF, dense and temporally-smooth grasp poses efficiently, and works robustly against large depth sensing noise. Embedded with AnyGrasp, we achieve a 93.3% success rate when clearing bins with over 300 unseen objects, which is comparable with human subjects under controlled conditions. Over 900 MPPH is reported on a single-arm system. For dynamic grasping, we demonstrate catching swimming robot fish in the water.
translated by 谷歌翻译
如今,机器人在我们的日常生活中起着越来越重要的作用。在以人为本的环境中,机器人经常会遇到成堆的对象,包装的项目或孤立的对象。因此,机器人必须能够在各种情况下掌握和操纵不同的物体,以帮助人类进行日常任务。在本文中,我们提出了一种多视图深度学习方法,以处理以人为中心的域中抓住强大的对象。特别是,我们的方法将任意对象的点云作为输入,然后生成给定对象的拼字图。获得的视图最终用于估计每个对象的像素抓握合成。我们使用小对象抓住数据集训练模型端到端,并在模拟和现实世界数据上对其进行测试,而无需进行任何进一步的微调。为了评估所提出方法的性能,我们在三种情况下进行了广泛的实验集,包括孤立的对象,包装的项目和一堆对象。实验结果表明,我们的方法在所有仿真和现实机器人方案中都表现出色,并且能够在各种场景配置中实现新颖对象的可靠闭环抓握。
translated by 谷歌翻译
6多机器人抓钩是一个持久但未解决的问题。最近的方法利用强3D网络从深度传感器中提取几何抓握表示形式,表明对公共物体的准确性卓越,但对光度化挑战性物体(例如,透明或反射材料中的物体)进行不满意。瓶颈在于这些物体的表面由于光吸收或折射而无法反射准确的深度。在本文中,与利用不准确的深度数据相反,我们提出了第一个称为MonograspNet的只有RGB的6-DOF握把管道,该管道使用稳定的2D特征同时处理任意对象抓握,并克服由光学上具有挑战性挑战的对象引起的问题。 MonograspNet利用关键点热图和正常地图来恢复由我们的新型表示形式表示的6-DOF抓握姿势,该表示的2D键盘具有相应的深度,握把方向,抓握宽度和角度。在真实场景中进行的广泛实验表明,我们的方法可以通过在抓住光学方面挑战的对象方面抓住大量对象并超过基于深度的竞争者的竞争成果。为了进一步刺激机器人的操纵研究,我们还注释并开源一个多视图和多场景现实世界抓地数据集,其中包含120个具有20m精确握把标签的混合光度复杂性对象。
translated by 谷歌翻译
我们提出了一种使用图像增强的自我监督训练方法,用于学习视图的视觉描述符。与通常需要复杂数据集的现有作品(例如注册的RGBD序列)不同,我们在无序的一组RGB图像上训练。这允许从单个相机视图(例如,在带有安装式摄像机的现有机器人单元格中学习)学习。我们使用数据增强创建合成视图和密集的像素对应关系。尽管数据记录和设置要求更简单,但我们发现我们的描述符与现有方法具有竞争力。我们表明,对合成对应的培训提供了各种相机视图的描述符的一致性。我们将训练与来自多种视图的几何对应关系进行比较,并提供消融研究。我们还使用从固定式摄像机中学到的描述符显示了一个机器人箱进行挑选实验,以定义掌握偏好。
translated by 谷歌翻译
对于机器人来说,在混乱的场景中抓住检测是一项非常具有挑战性的任务。生成合成抓地数据是训练和测试抓握方法的流行方式,DEX-NET和GRASPNET也是如此。然而,这些方法在3D合成对象模型上生成了训练掌握,但是在具有不同分布的图像或点云上进行评估,从而降低了由于稀疏的掌握标签和协变量移位而在真实场景上的性能。为了解决现有的问题,我们提出了一种新型的policy抓取检测方法,该方法可以用RGB-D图像生成的密集像素级抓握标签对相同的分布进行训练和测试。提出了一种并行深度的掌握生成(PDG生成)方法,以通过并行的投射点的新成像模型生成平行的深度图像;然后,该方法为每个像素生成多个候选抓地力,并通过平坦检测,力闭合度量和碰撞检测获得可靠的抓地力。然后,构建并释放了大型综合像素级姿势数据集(PLGP数据集)。该数据集使用先前的数据集和稀疏的Grasp样品区分开,是第一个像素级掌握数据集,其上的分布分布基于深度图像生成了grasps。最后,我们建立和测试了一系列像素级的抓地力检测网络,并通过数据增强过程进行不平衡训练,该过程以输入RGB-D图像的方式学习抓握姿势。广泛的实验表明,我们的policy掌握方法可以在很大程度上克服模拟与现实之间的差距,并实现最新的性能。代码和数据可在https://github.com/liuchunsense/plgp-dataset上提供。
translated by 谷歌翻译
在密集的混乱中抓住是自动机器人的一项基本技能。但是,在混乱的情况下,拥挤性和遮挡造成了很大的困难,无法在没有碰撞的情况下产生有效的掌握姿势,这会导致低效率和高失败率。为了解决这些问题,我们提出了一个名为GE-GRASP的通用框架,用于在密集的混乱中用于机器人运动计划,在此,我们利用各种动作原始素来遮挡对象去除,并呈现发电机 - 评估器架构以避免空间碰撞。因此,我们的ge-grasp能够有效地抓住密集的杂物中的物体,并有希望的成功率。具体而言,我们定义了三个动作基础:面向目标的抓握,用于捕获,推动和非目标的抓握,以减少拥挤和遮挡。发电机有效地提供了参考空间信息的各种动作候选者。同时,评估人员评估了所选行动原始候选者,其中最佳动作由机器人实施。在模拟和现实世界中进行的广泛实验表明,我们的方法在运动效率和成功率方面优于杂乱无章的最新方法。此外,我们在现实世界中实现了可比的性能,因为在模拟环境中,这表明我们的GE-Grasp具有强大的概括能力。补充材料可在以下网址获得:https://github.com/captainwudaokou/ge-grasp。
translated by 谷歌翻译
在以人为本的环境中工作的机器人需要知道场景中存在哪种物体,以及如何掌握和操纵不同情况下的各种对象,以帮助人类在日常任务中。因此,对象识别和抓握是此类机器人的两个关键功能。最先进的解决物体识别并将其抓握为两个单独的问题,同时都使用可视输入。此外,在训练阶段之后,机器人的知识是固定的。在这种情况下,如果机器人面临新的对象类别,则必须从划痕中重新培训以结合新信息而无需灾难性干扰。为了解决这个问题,我们提出了一个深入的学习架构,具有增强的存储器能力来处理开放式对象识别和同时抓握。特别地,我们的方法将物体的多视图作为输入,并共同估计像素 - 方向掌握配置以及作为输出的深度和旋转不变表示。然后通过元主动学习技术使用所获得的表示用于开放式对象识别。我们展示了我们掌握从未见过的对象的方法的能力,并在模拟和现实世界中使用非常少数的例子在现场使用很少的例子快速学习新的对象类别。
translated by 谷歌翻译
Being able to grasp objects is a fundamental component of most robotic manipulation systems. In this paper, we present a new approach to simultaneously reconstruct a mesh and a dense grasp quality map of an object from a depth image. At the core of our approach is a novel camera-centric object representation called the "object shell" which is composed of an observed "entry image" and a predicted "exit image". We present an image-to-image residual ConvNet architecture in which the object shell and a grasp-quality map are predicted as separate output channels. The main advantage of the shell representation and the corresponding neural network architecture, ShellGrasp-Net, is that the input-output pixel correspondences in the shell representation are explicitly represented in the architecture. We show that this coupling yields superior generalization capabilities for object reconstruction and accurate grasp quality estimation implicitly considering the object geometry. Our approach yields an efficient dense grasp quality map and an object geometry estimate in a single forward pass. Both of these outputs can be used in a wide range of robotic manipulation applications. With rigorous experimental validation, both in simulation and on a real setup, we show that our shell-based method can be used to generate precise grasps and the associated grasp quality with over 90% accuracy. Diverse grasps computed on shell reconstructions allow the robot to select and execute grasps in cluttered scenes with more than 93% success rate.
translated by 谷歌翻译
在本文中,我们介绍了DA $^2 $,这是第一个大型双臂灵敏性吸引数据集,用于生成最佳的双人握把对,用于任意大型对象。该数据集包含大约900万的平行jaw grasps,由6000多个对象生成,每个对象都有各种抓紧敏度度量。此外,我们提出了一个端到端的双臂掌握评估模型,该模型在该数据集的渲染场景上训练。我们利用评估模型作为基准,通过在线分析和真实的机器人实验来显示这一新颖和非平凡数据集的价值。所有数据和相关的代码将在https://sites.google.com/view/da2dataset上开源。
translated by 谷歌翻译
我们提出了GRASP提案网络(GP-NET),这是一种卷积神经网络模型,可以为移动操纵器生成6-DOF GRASP。为了训练GP-NET,我们合成生成一个包含深度图像和地面真相掌握信息的数据集,以供超过1400个对象。在现实世界实验中,我们使用egad!掌握基准测试,以评估两种常用算法的GP-NET,即体积抓地力网络(VGN)和在PAL TIAGO移动操纵器上进行的GRASP抓取网络(VGN)和GRASP姿势检测包(GPD)。GP-NET的掌握率为82.2%,而VGN为57.8%,GPD的成功率为63.3%。与机器人握把中最新的方法相反,GP-NET可以在不限制工作空间的情况下使用移动操纵器抓住对象,用于抓住对象,需要桌子进行分割或需要高端GPU。为了鼓励使用GP-NET,我们在https://aucoroboticsmu.github.io/gp-net/上提供ROS包以及我们的代码和预培训模型。
translated by 谷歌翻译
高分辨率表示对于基于视觉的机器人抓问题很重要。现有作品通常通过子网络将输入图像编码为低分辨率表示形式,然后恢复高分辨率表示。这将丢失空间信息,当考虑多种类型的对象或远离摄像机时,解码器引入的错误将更加严重。为了解决这些问题,我们重新审视了CNN的设计范式,以实现机器人感知任务。我们证明,与串行堆叠的卷积层相反,使用平行分支将是机器人视觉抓握任务的更强大设计。特别是,为机器人感知任务(例如,高分辨率代表和轻量级设计)提供了神经网络设计的准则,这些指南应对不同操纵场景中的挑战做出回应。然后,我们开发了一种新颖的抓地视觉体系结构,称为HRG-NET,这是一种平行分支结构,始终保持高分辨率表示形式,并反复在分辨率上交换信息。广泛的实验验证了这两种设计可以有效地提高基于视觉的握把和加速网络训练的准确性。我们在YouTube上的真实物理环境中显示了一系列比较实验:https://youtu.be/jhlsp-xzhfy。
translated by 谷歌翻译
深度学习已被广​​泛用于推断强大的掌握。虽然最初用于学习掌握配置的人类标记的RGB-D数据集,但是这种大型数据集的准备是昂贵的。为了解决这个问题,通过物理模拟器生成图像,并且使用物理启发模型(例如,抽吸真空杯和物体之间的接触型号)作为掌握质量评估度量来注释合成图像。然而,这种联系方式复杂,需要通过实验进行参数识别,以确保真实的世界表现。此外,以前的研究还没有考虑机器人可达性,例如当具有高抓握质量的掌握配置由于机器人的碰撞或物理限制而无法到达目标时无法到达目标。在这项研究中,我们提出了一种直观的几何分析掌握质量评估度量。我们进一步纳入了可达性评估度量。我们通过拟议的评估度量对模拟器中的合成图像上的综合评估标准进行注释,以培训称为抽吸贪污U-Net ++(SG-U-Net ++)的自动编码器解码器。实验结果表明,我们直观的掌握质量评估度量与物理启发度量有竞争力。学习可达性有助于通过消除明显无法访问的候选者来减少运动规划计算时间。该系统实现了560pph(每小时碎片)的整体拾取速度。
translated by 谷歌翻译
机器人操纵可以配制成诱导一系列空间位移:其中移动的空间可以包括物体,物体的一部分或末端执行器。在这项工作中,我们提出了一个简单的模型架构,它重新排列了深度功能,以从视觉输入推断出可视输入的空间位移 - 这可以参数化机器人操作。它没有对象的假设(例如规范姿势,模型或关键点),它利用空间对称性,并且比我们学习基于视觉的操纵任务的基准替代方案更高的样本效率,并且依赖于堆叠的金字塔用看不见的物体组装套件;从操纵可变形的绳索,以将堆积的小物体推动,具有闭环反馈。我们的方法可以表示复杂的多模态策略分布,并推广到多步顺序任务,以及6dof拾取器。 10个模拟任务的实验表明,它比各种端到端基线更快地学习并概括,包括使用地面真实对象姿势的政策。我们在现实世界中使用硬件验证我们的方法。实验视频和代码可在https://transporternets.github.io获得
translated by 谷歌翻译
Generating grasp poses is a crucial component for any robot object manipulation task. In this work, we formulate the problem of grasp generation as sampling a set of grasps using a variational autoencoder and assess and refine the sampled grasps using a grasp evaluator model. Both Grasp Sampler and Grasp Refinement networks take 3D point clouds observed by a depth camera as input. We evaluate our approach in simulation and real-world robot experiments. Our approach achieves 88% success rate on various commonly used objects with diverse appearances, scales, and weights. Our model is trained purely in simulation and works in the real world without any extra steps. The video of our experiments can be found here.
translated by 谷歌翻译