本文介绍了一种从原始RGB-D视频进行任务演示的视频中学习类别级别的新技术,没有手动标签或注释。类别级的学习旨在获取可以推广到新对象的技能,其几何形状和纹理与演示中使用的对象不同。我们通过首先将抓地力和操作视为工具使用的特殊情况,解决此问题,其中工具对象被移至目标对象的参考框架中定义的一系列键置。使用动态图卷积神经网络预测工具和目标对象以及其钥匙置,该网络将整个场景的自动分割深度和颜色图像作为输入。具有真实机器人手臂的对象操纵任务上的经验结果表明,所提出的网络可以有效地从真实的视觉演示中学习,以在同一类别内的新颖对象上执行任务,并且优于替代方法。
translated by 谷歌翻译
我们呈现神经描述符字段(NDFS),对象表示,其通过类别级别描述符在对象和目标(例如用于悬挂的机器人夹具或用于悬挂的机架)之间进行编码和相对姿势。我们使用此表示进行对象操作,在这里,在给定任务演示时,我们要在同一类别中对新对象实例重复相同的任务。我们建议通过搜索(通过优化)来实现这一目标,为演示中观察到的描述符匹配的姿势。 NDFS通过不依赖于专家标记的关键点的3D自动编码任务,方便地以自我监督的方式培训。此外,NDFS是SE(3) - 保证在所有可能的3D对象翻译和旋转中推广的性能。我们展示了在仿真和真正的机器人上的少数(5-10)示范中的操纵任务的学习。我们的性能遍历两个对象实例和6-DOF对象姿势,并且显着优于最近依赖于2D描述符的基线。项目网站:https://yilundu.github.io/ndf/。
translated by 谷歌翻译
在本文中,我们探讨了机器人是否可以学会重新应用一组多样的物体以实现各种所需的掌握姿势。只要机器人的当前掌握姿势未能执行所需的操作任务,需要重新扫描。具有这种能力的赋予机器人具有在许多领域中的应用,例如制造或国内服务。然而,由于日常物体中的几何形状和状态和行动空间的高维度,这是一个具有挑战性的任务。在本文中,我们提出了一种机器人系统,用于将物体的部分点云和支持环境作为输入,输出序列和放置操作的序列来转换到所需的对象掌握姿势。关键技术包括神经稳定放置预测器,并通过利用和改变周围环境来引发基于图形的解决方案。我们介绍了一个新的和具有挑战性的合成数据集,用于学习和评估所提出的方法。我们展示了我们提出的系统与模拟器和现实世界实验的有效性。我们的项目网页上有更多视频和可视化示例。
translated by 谷歌翻译
当代掌握检测方法采用深度学习,实现传感器和物体模型不确定性的鲁棒性。这两个主导的方法设计了掌握质量评分或基于锚的掌握识别网络。本文通过将其视为图像空间中的关键点检测来掌握掌握检测的不同方法。深网络检测每个掌握候选者作为一对关键点,可转换为掌握代表= {x,y,w,{\ theta}} t,而不是转角点的三态或四重奏。通过将关键点分组成对来降低检测难度提高性能。为了促进捕获关键点之间的依赖关系,将非本地模块结合到网络设计中。基于离散和连续定向预测的最终过滤策略消除了错误的对应关系,并进一步提高了掌握检测性能。此处提出的方法GKNET在康奈尔和伸缩的提花数据集上的精度和速度之间实现了良好的平衡(在41.67和23.26 fps的96.9%和98.39%)之间。操纵器上的后续实验使用4种类型的抓取实验来评估GKNet,反映不同滋扰的速度:静态抓握,动态抓握,在各种相机角度抓住,夹住。 GKNet优于静态和动态掌握实验中的参考基线,同时表现出变化的相机观点和中度杂波的稳健性。结果证实了掌握关键点是深度掌握网络的有效输出表示的假设,为预期的滋扰因素提供鲁棒性。
translated by 谷歌翻译
3D视觉输入的对象操纵对构建可宽大的感知和政策模型构成了许多挑战。然而,现有基准中的3D资产主要缺乏与拓扑和几何中的现实世界内复杂的3D形状的多样性。在这里,我们提出了Sapien操纵技能基准(Manishill)以在全物理模拟器中的各种物体上基准操纵技巧。 Manishill中的3D资产包括大型课堂内拓扑和几何变化。仔细选择任务以涵盖不同类型的操纵挑战。 3D Vision的最新进展也使我们认为我们应该定制基准,以便挑战旨在邀请研究3D深入学习的研究人员。为此,我们模拟了一个移动的全景摄像头,返回以自我为中心的点云或RGB-D图像。此外,我们希望Manishill是为一个对操纵研究感兴趣的广泛研究人员提供服务。除了支持从互动的政策学习,我们还支持学习 - 从演示(LFD)方法,通过提供大量的高质量演示(〜36,000个成功的轨迹,总共〜1.5米点云/ RGB-D帧)。我们提供使用3D深度学习和LFD算法的基线。我们的基准(模拟器,环境,SDK和基线)的所有代码都是开放的,并且将基于基准举办跨学科研究人员面临的挑战。
translated by 谷歌翻译
抓握是通过在一组触点上施加力和扭矩来挑选对象的过程。深度学习方法的最新进展允许在机器人对象抓地力方面快速进步。我们在过去十年中系统地调查了出版物,特别感兴趣使用最终效果姿势的所有6度自由度抓住对象。我们的综述发现了四种用于机器人抓钩的常见方法:基于抽样的方法,直接回归,强化学习和示例方法。此外,我们发现了围绕抓握的两种“支持方法”,这些方法使用深入学习来支持抓握过程,形状近似和负担能力。我们已经将本系统评论(85篇论文)中发现的出版物提炼为十个关键要点,我们认为对未来的机器人抓握和操纵研究至关重要。该调查的在线版本可从https://rhys-newbury.github.io/projects/6dof/获得
translated by 谷歌翻译
如今,机器人在我们的日常生活中起着越来越重要的作用。在以人为本的环境中,机器人经常会遇到成堆的对象,包装的项目或孤立的对象。因此,机器人必须能够在各种情况下掌握和操纵不同的物体,以帮助人类进行日常任务。在本文中,我们提出了一种多视图深度学习方法,以处理以人为中心的域中抓住强大的对象。特别是,我们的方法将任意对象的点云作为输入,然后生成给定对象的拼字图。获得的视图最终用于估计每个对象的像素抓握合成。我们使用小对象抓住数据集训练模型端到端,并在模拟和现实世界数据上对其进行测试,而无需进行任何进一步的微调。为了评估所提出方法的性能,我们在三种情况下进行了广泛的实验集,包括孤立的对象,包装的项目和一堆对象。实验结果表明,我们的方法在所有仿真和现实机器人方案中都表现出色,并且能够在各种场景配置中实现新颖对象的可靠闭环抓握。
translated by 谷歌翻译
机器人可以通过仅仅在单个对象实例上抓住姿势的证明,以任意姿势操纵类别内看不见的对象?在本文中,我们尝试通过使用Useek(一种无监督的SE(3) - 等级关键点方法来应对这一有趣的挑战,该方法在类别中享受整个实例的对齐方式,以执行可推广的操作。 USEEK遵循教师学生的结构,将无监督的关键点发现和SE(3) - 等级关键点检测解除。使用Useek,机器人可以以有效且可解释的方式推断与任务相关的对象框架,从而使任何类别内对象都从任何姿势中操纵。通过广泛的实验,我们证明了Useek产生的关键点具有丰富的语义,因此成功地将功能知识从演示对象转移到了新颖的对象。与其他进行操作的对象表示相比,面对大类别内形状差异,更健壮的演示率更有限,并且在推理时间更有效。
translated by 谷歌翻译
As the basis for prehensile manipulation, it is vital to enable robots to grasp as robustly as humans. In daily manipulation, our grasping system is prompt, accurate, flexible and continuous across spatial and temporal domains. Few existing methods cover all these properties for robot grasping. In this paper, we propose a new methodology for grasp perception to enable robots these abilities. Specifically, we develop a dense supervision strategy with real perception and analytic labels in the spatial-temporal domain. Additional awareness of objects' center-of-mass is incorporated into the learning process to help improve grasping stability. Utilization of grasp correspondence across observations enables dynamic grasp tracking. Our model, AnyGrasp, can generate accurate, full-DoF, dense and temporally-smooth grasp poses efficiently, and works robustly against large depth sensing noise. Embedded with AnyGrasp, we achieve a 93.3% success rate when clearing bins with over 300 unseen objects, which is comparable with human subjects under controlled conditions. Over 900 MPPH is reported on a single-arm system. For dynamic grasping, we demonstrate catching swimming robot fish in the water.
translated by 谷歌翻译
视觉模仿学习为机器人系统提供了有效,直观的解决方案,以获得新颖的操纵技巧。但是,仅凭视觉输入就可以同时学习几何任务约束,并控制政策仍然是一个具有挑战性的问题。在本文中,我们提出了一种基于关键点的视觉模仿(K-VIL)的方法,该方法会自动从少数人类演示视频中提取稀疏,以对象独立的任务表示。任务表示形式由主要歧管,其关联的本地框架以及任务执行所需的运动原始框架上的基于关键点的几何约束以及移动原始构成。我们的方法能够从单个演示视频中提取此类任务表示,并在新演示可用时会逐步更新它们。为了使用新颖的场景中学习的优先几何约束来重现操纵技能,我们介绍了一种新颖的基于Kepoint的入学控制器。我们在几个现实世界中评估了我们的方法,展示了其处理混乱的场景,新的对象的新实例以及大对象姿势和形状变化的能力,以及其一声效率和稳健性模仿学习设置。视频和源代码可在https://sites.google.com/view/k-vil上找到。
translated by 谷歌翻译
从语言灵活性和组成性中受益,人类自然打算使用语言来指挥体现的代理,以进行复杂的任务,例如导航和对象操纵。在这项工作中,我们旨在填补最后一英里的体现代理的空白 - 通过遵循人类的指导,例如,“将红杯子移到盒子旁边,同时将其保持直立。”为此,我们介绍了一个自动操纵求解器(AMSolver)模拟器,并基于IT构建视觉和语言操纵基准(VLMBENCH),其中包含有关机器人操纵任务的各种语言说明。具体而言,创建基于模块化规则的任务模板是为了自动生成具有语言指令的机器人演示,包括各种对象形状和外观,动作类型和运动约束。我们还开发了一个基于关键点的模型6D-Cliport,以处理多视图观察和语言输入,并输出一个6个自由度(DOF)动作的顺序。我们希望新的模拟器和基准将促进对语言引导机器人操纵的未来研究。
translated by 谷歌翻译
We describe a learning-based approach to handeye coordination for robotic grasping from monocular images. To learn hand-eye coordination for grasping, we trained a large convolutional neural network to predict the probability that task-space motion of the gripper will result in successful grasps, using only monocular camera images and independently of camera calibration or the current robot pose. This requires the network to observe the spatial relationship between the gripper and objects in the scene, thus learning hand-eye coordination. We then use this network to servo the gripper in real time to achieve successful grasps. To train our network, we collected over 800,000 grasp attempts over the course of two months, using between 6 and 14 robotic manipulators at any given time, with differences in camera placement and hardware. Our experimental evaluation demonstrates that our method achieves effective real-time control, can successfully grasp novel objects, and corrects mistakes by continuous servoing.
translated by 谷歌翻译
在现实世界中,教授多指的灵巧机器人在现实世界中掌握物体,这是一个充满挑战的问题,由于其高维状态和动作空间。我们提出了一个机器人学习系统,该系统可以进行少量的人类示范,并学会掌握在某些被遮挡的观察结果的情况下掌握看不见的物体姿势。我们的系统利用了一个小型运动捕获数据集,并为多指的机器人抓手生成具有多种多样且成功的轨迹的大型数据集。通过添加域随机化,我们表明我们的数据集提供了可以将其转移到策略学习者的强大抓地力轨迹。我们训练一种灵活的抓紧策略,该策略将对象的点云作为输入,并预测连续的动作以从不同初始机器人状态掌握对象。我们在模拟中评估了系统对22多伏的浮动手的有效性,并在现实世界中带有kuka手臂的23多杆Allegro机器人手。从我们的数据集中汲取的政策可以很好地概括在模拟和现实世界中的看不见的对象姿势
translated by 谷歌翻译
我们引入了来自多个机器人手的对象的神经隐式表示。多个机器人手之间的不同抓地力被编码为共享的潜在空间。学会了每个潜在矢量以两个3D形状的签名距离函数来解码对象的3D形状和机器人手的3D形状。此外,学会了潜在空间中的距离度量,以保留不同机器人手之间的graSps之间的相似性,其中根据机器人手的接触区域定义了grasps的相似性。该属性使我们能够在包括人手在内的不同抓地力之间转移抓地力,并且GRASP转移有可能在机器人之间分享抓地力,并使机器人能够从人类那里学习掌握技能。此外,我们隐式表示中对象和grasps的编码符号距离函数可用于6D对象姿势估计,并从部分点云中掌握触点优化,这可以在现实世界中启用机器人抓握。
translated by 谷歌翻译
成功掌握对象的能力在机器人中是至关重要的,因为它可以实现多个交互式下游应用程序。为此,大多数方法要么计算兴趣对象的完整6D姿势,要么学习预测一组掌握点。虽然前一种方法对多个对象实例或类没有很好地扩展,但后者需要大的注释数据集,并且受到新几何形状的普遍性能力差的阻碍。为了克服这些缺点,我们建议教授一个机器人如何用简单而简短的人类示范掌握一个物体。因此,我们的方法既不需要许多注释图像,也不限于特定的几何形状。我们首先介绍了一个小型RGB-D图像,显示人对象交互。然后利用该序列来构建表示所描绘的交互的相关手和对象网格。随后,我们完成重建对象形状的缺失部分,并估计了场景中的重建和可见对象之间的相对变换。最后,我们从物体和人手之间的相对姿势转移a-prioriz知识,随着当前对象在场景中的估计到机器人的必要抓握指令。与丰田的人类支持机器人(HSR)在真实和合成环境中的详尽评估证明了我们所提出的方法的适用性及其优势与以前的方法相比。
translated by 谷歌翻译
机器人将机器人的无缝集成到人类环境需要机器人来学习如何使用现有的人类工具。学习工具操纵技能的目前方法主要依赖于目标机器人环境中提供的专家演示,例如,通过手动引导机器人操纵器或通过远程操作。在这项工作中,我们介绍了一种自动化方法,取代了一个专家演示,用YouTube视频来学习工具操纵策略。主要贡献是双重的。首先,我们设计一个对齐过程,使模拟环境与视频中观察到的真实世界。这是作为优化问题,找到刀具轨迹的空间对齐,以最大化环境给出的稀疏目标奖励。其次,我们描述了一种专注于工具的轨迹而不是人类的运动的模仿学习方法。为此,我们将加强学习与优化过程相结合,以基于对准环境中的工具运动来找到控制策略和机器人的放置。我们展示了仿真中的铲子,镰刀和锤子工具的建议方法,并展示了训练有素的政策对真正的弗兰卡·埃米卡熊猫机器人示范的卫生政策的有效性。
translated by 谷歌翻译
在以人为本的环境中工作的机器人需要知道场景中存在哪种物体,以及如何掌握和操纵不同情况下的各种对象,以帮助人类在日常任务中。因此,对象识别和抓握是此类机器人的两个关键功能。最先进的解决物体识别并将其抓握为两个单独的问题,同时都使用可视输入。此外,在训练阶段之后,机器人的知识是固定的。在这种情况下,如果机器人面临新的对象类别,则必须从划痕中重新培训以结合新信息而无需灾难性干扰。为了解决这个问题,我们提出了一个深入的学习架构,具有增强的存储器能力来处理开放式对象识别和同时抓握。特别地,我们的方法将物体的多视图作为输入,并共同估计像素 - 方向掌握配置以及作为输出的深度和旋转不变表示。然后通过元主动学习技术使用所获得的表示用于开放式对象识别。我们展示了我们掌握从未见过的对象的方法的能力,并在模拟和现实世界中使用非常少数的例子在现场使用很少的例子快速学习新的对象类别。
translated by 谷歌翻译
机器人操纵计划是找到一系列机器人配置的问题,该配置涉及与场景中的对象的交互,例如掌握,放置,工具使用等来实现这种相互作用,传统方法需要手工设计的特征和对象表示,它仍然是如何以灵活有效的方式描述与任意对象的这种交互的开放问题。例如,通过3D建模的最新进步启发,例如,NERF,我们提出了一种方法来表示对象作为神经隐式功能,我们可以在其中定义和共同列车交互约束函数。所提出的像素对准表示直接从具有已知相机几何形状的相机图像推断出,当时在整个操纵管道中作为感知组件,同时能够实现连续的机器人操纵计划。
translated by 谷歌翻译
我们探索一种新的方法来感知和操纵3D铰接式物体,该物体可以概括地使机器人阐明看不见的对象。我们提出了一个基于视觉的系统,该系统学会预测各种铰接物体的各个部分的潜在运动,以指导系统的下游运动计划以表达对象。为了预测对象运动,我们训练一个神经网络,以输出一个密集的向量场,代表点云中点云中点的点运动方向。然后,我们根据该向量领域部署一个分析运动计划者,以实现产生最大发音的政策。我们完全在模拟中训练视觉系统,并演示了系统在模拟和现实世界中概括的对象实例和新颖类别的能力,并将我们的政策部署在没有任何填充的锯耶机器人上。结果表明,我们的系统在模拟和现实世界实验中都达到了最先进的性能。
translated by 谷歌翻译
物体很少在人类环境中孤立地坐着。因此,我们希望我们的机器人来推理多个对象如何相互关系,以及这些关系在机器人与世界互动时可能会发生变化。为此,我们提出了一个新型的图形神经网络框架,用于多对象操纵,以预测对机器人行动的影响如何变化。我们的模型在部分视图点云上运行,可以推理操作过程中动态交互的多个对象。通过在学习的潜在图嵌入空间中学习动态模型,我们的模型使多步规划可以达到目标目标关系。我们展示了我们的模型纯粹是在模拟中训练的,可以很好地传输到现实世界。我们的计划器使机器人能够使用推送和拾取和地点技能重新排列可变数量的对象。
translated by 谷歌翻译