在非结构化环境中,使用看不见的对象进行实例分割是一个具有挑战性的问题。为了解决这个问题,我们提出了一种机器人学习方法,以积极与新对象进行互动,并收集每个对象的训练标签,以进一步进行微调以提高细分模型的性能,同时避免手动标记数据集的耗时过程。通过端到端的强化学习对奇异和抓斗(SAG)政策进行培训。考虑到一堆混乱的对象,我们的方法选择推动和抓住动作来打破混乱并进行对象不合时宜的抓握,而SAG策略则将其作为输入视觉观察和不完善的分割。我们将问题分解为三个子任务:(1)对象singulation子任务旨在将对象彼此分开,从而产生更多的空间,从而减轻了(2)无碰撞抓握子任务的难度; (3)通过使用基于光流的二进制分类器和运动提示后处理进行传输学习,掩盖生成子任务以获得自标记的地面真相蒙版。我们的系统在模拟的混乱场景中达到了70%的单次成功率。我们系统的交互式分割可实现87.8%,73.9%和69.3%的玩具块,模拟中的YCB对象和现实世界中的新颖对象的平均精度,这表现优于几个基准。
translated by 谷歌翻译
Both goal-agnostic and goal-oriented tasks have practical value for robotic grasping: goal-agnostic tasks target all objects in the workspace, while goal-oriented tasks aim at grasping pre-assigned goal objects. However, most current grasping methods are only better at coping with one task. In this work, we propose a bifunctional push-grasping synergistic strategy for goal-agnostic and goal-oriented grasping tasks. Our method integrates pushing along with grasping to pick up all objects or pre-assigned goal objects with high action efficiency depending on the task requirement. We introduce a bifunctional network, which takes in visual observations and outputs dense pixel-wise maps of Q values for pushing and grasping primitive actions, to increase the available samples in the action space. Then we propose a hierarchical reinforcement learning framework to coordinate the two tasks by considering the goal-agnostic task as a combination of multiple goal-oriented tasks. To reduce the training difficulty of the hierarchical framework, we design a two-stage training method to train the two types of tasks separately. We perform pre-training of the model in simulation, and then transfer the learned model to the real world without any additional real-world fine-tuning. Experimental results show that the proposed approach outperforms existing methods in task completion rate and grasp success rate with less motion number. Supplementary material is available at https: //github.com/DafaRen/Learning_Bifunctional_Push-grasping_Synergistic_Strategy_for_Goal-agnostic_and_Goal-oriented_Tasks
translated by 谷歌翻译
在密集的混乱中抓住是自动机器人的一项基本技能。但是,在混乱的情况下,拥挤性和遮挡造成了很大的困难,无法在没有碰撞的情况下产生有效的掌握姿势,这会导致低效率和高失败率。为了解决这些问题,我们提出了一个名为GE-GRASP的通用框架,用于在密集的混乱中用于机器人运动计划,在此,我们利用各种动作原始素来遮挡对象去除,并呈现发电机 - 评估器架构以避免空间碰撞。因此,我们的ge-grasp能够有效地抓住密集的杂物中的物体,并有希望的成功率。具体而言,我们定义了三个动作基础:面向目标的抓握,用于捕获,推动和非目标的抓握,以减少拥挤和遮挡。发电机有效地提供了参考空间信息的各种动作候选者。同时,评估人员评估了所选行动原始候选者,其中最佳动作由机器人实施。在模拟和现实世界中进行的广泛实验表明,我们的方法在运动效率和成功率方面优于杂乱无章的最新方法。此外,我们在现实世界中实现了可比的性能,因为在模拟环境中,这表明我们的GE-Grasp具有强大的概括能力。补充材料可在以下网址获得:https://github.com/captainwudaokou/ge-grasp。
translated by 谷歌翻译
现场机器人收获是农业产业近期发展的有希望的技术。在自然果园收获之前,机器人识别和本地化水果至关重要。然而,果园中收获机器人的工作空间很复杂:许多水果被分支和叶子堵塞。在执行操纵之前,估计每个果实的适当抓握姿势是很重要的。在本研究中,建议使用来自RGB-D相机的颜色和几何感官数据来执行端到端实例分段和掌握估计的几何意识网络A3N。此外,应用了工作区几何建模以帮助机器人操纵。此外,我们实施全球到本地扫描策略,它使机器人能够在具有两个消费级RGB-D相机中准确地识别和检索现场环境中的水果。我们还全面评估了所提出的网络的准确性和鲁棒性。实验结果表明,A3N达到了0.873的实例分割精度,平均计算时间为35毫秒。掌握估计的平均准确性分别为0.61厘米,4.8美元,中心和方向分别为4.8美元。总的来说,利用全球到局部扫描和A3N的机器人系统实现了从现场收集实验中的70 \%-85 \%的收获量的成功率。
translated by 谷歌翻译
机器人经常面临抓住目标对象的情况,但由于其他当前物体阻止了掌握动作。我们提出了一种深入的强化学习方法,以学习掌握和推动政策,以在高度混乱的环境中操纵目标对象以解决这个问题。特别是,提出了双重强化学习模型方法,该方法在处理复杂场景时具有很高的弹性,在模拟环境中使用原始对象平均达到98%的任务完成。为了评估所提出方法的性能,我们在包装对象和一堆对象方案中进行了两组实验集,在模拟中总共进行了1000个测试。实验结果表明,该提出的方法在各种情况下都效果很好,并且表现出了最新的最新方法。演示视频,训练有素的模型和源代码可重复可重复性目的。 https://github.com/kamalnl92/self-superist-learning-for-pushing-and-grasping。
translated by 谷歌翻译
对于机器人来说,拾取透明的对象仍然是一项具有挑战性的任务。透明对象(例如反射和折射)的视觉属性使依赖相机传感的当前抓握方法无法检测和本地化。但是,人类可以通过首先观察其粗剖面,然后戳其感兴趣的区域以获得良好的抓握轮廓来很好地处理透明的物体。受到这一点的启发,我们提出了一个新颖的视觉引导触觉框架,以抓住透明的物体。在拟议的框架中,首先使用分割网络来预测称为戳戳区域的水平上部区域,在该区域中,机器人可以在该区域戳入对象以获得良好的触觉读数,同时导致对物体状态的最小干扰。然后,使用高分辨率胶触觉传感器进行戳戳。鉴于触觉阅读有所改善的当地概况,计划掌握透明物体的启发式掌握。为了减轻对透明对象的现实世界数据收集和标记的局限性,构建了一个大规模逼真的合成数据集。广泛的实验表明,我们提出的分割网络可以预测潜在的戳戳区域,平均平均精度(地图)为0.360,而视觉引导的触觉戳戳可以显着提高抓地力成功率,从38.9%到85.2%。由于其简单性,我们提出的方法也可以被其他力量或触觉传感器采用,并可以用于掌握其他具有挑战性的物体。本文中使用的所有材料均可在https://sites.google.com/view/tactilepoking上获得。
translated by 谷歌翻译
在本文中,我们提出了一种新的深度神经网络架构,用于联合类禁止对象分割和使用平行板夹持器的机器人拾取任务的掌握检测。我们引入深度感知的坐标卷积(CoordConv),一种方法来提高基于点提案的对象实例分段精度,在复杂的场景中不添加任何其他网络参数或计算复杂性。深度感知CoordConv使用深度数据来提取有关对象位置的先前信息以实现高度准确的对象实例分段。这些产生的分割掩模与预测的掌握候选者组合,导致使用平行板夹具抓住的完整场景描述。我们评估掌握检测和实例分割对具有挑战性机器人拣选数据集的准确性,即SIL \'EANE和OCID_GRASP,并展示了在真实世界机器人采摘任务上的联合掌握检测和分割的益处。
translated by 谷歌翻译
非结构化环境中的多步操纵任务对于学习的机器人来说非常具有挑战性。这些任务相互作用,包括可以获得的预期状态,可以实现整体任务和低级推理,以确定哪些行动将产生这些国家。我们提出了一种无模型的深度加强学习方法来学习多步理操作任务。我们介绍了一个基于视觉的模型架构的机器人操纵网络(ROMANNET),以了解动作值函数并预测操纵操作候选。我们定义基于Gaussian(TPG)奖励函数的任务进度,基于导致成功的动作原语的行动和实现整体任务目标的进展来计算奖励。为了平衡探索/剥削的比率,我们介绍了一个损失调整后的探索(LAE)政策,根据亏损估计的Boltzmann分配来确定来自行动候选人的行动。我们通过培训ROMANNET来展示我们方法的有效性,以了解模拟和现实世界中的几个挑战的多步机械管理任务。实验结果表明,我们的方法优于现有的方法,并在成功率和行动效率方面实现了最先进的性能。消融研究表明,TPG和LAE对多个块堆叠的任务特别有益。代码可用:https://github.com/skumra/romannet
translated by 谷歌翻译
人类毫不费力地解决了在日常生活中推动任务,但解锁这些能力在机器人中仍然是一个挑战,因为这些任务的物理模型通常不准确或无法实现。最先进的数据驱动方法学会弥补这些不准确性或更换近似物理模型。尽管如此,深度Q-Networks(DQN)等方法遭受了大状态行动空间中的本地Optima。此外,他们依靠精心挑选的深度学习架构和学习范式。在本文中,我们建议框架将DQN推向策略(其中推送和如何)作为图像到图像到图像转换问题,并利用基于沙漏的架构。我们介绍了一种架构,该架构组合的预测器,其推动导致环境的变化具有专用于推动任务的状态 - 动作值预测器。此外,我们调查了职位信息编码以学习依赖于依赖的策略行为。我们在仿真实验中展示了UR5机器人手臂,即我们的整体架构帮助DQN在推动任务中达到更快,实现更高的性能,涉及具有未知动态的对象。
translated by 谷歌翻译
Perceiving and manipulating objects in a generalizable way has been actively studied by the computer vision and robotics communities, where cross-category generalizable manipulation skills are highly desired yet underexplored. In this work, we propose to learn such generalizable perception and manipulation via Generalizable and Actionable Parts (GAParts). By identifying and defining 9 GAPart classes (e.g. buttons, handles, etc), we show that our part-centric approach allows our method to learn object perception and manipulation skills from seen object categories and directly generalize to unseen categories. Following the GAPart definition, we construct a large-scale part-centric interactive dataset, GAPartNet, where rich, part-level annotations (semantics, poses) are provided for 1166 objects and 8489 part instances. Based on GAPartNet, we investigate three cross-category tasks: part segmentation, part pose estimation, and part-based object manipulation. Given the large domain gaps between seen and unseen object categories, we propose a strong 3D segmentation method from the perspective of domain generalization by integrating adversarial learning techniques. Our method outperforms all existing methods by a large margin, no matter on seen or unseen categories. Furthermore, with part segmentation and pose estimation results, we leverage the GAPart pose definition to design part-based manipulation heuristics that can generalize well to unseen object categories in both simulation and real world. The dataset and code will be released.
translated by 谷歌翻译
当代掌握检测方法采用深度学习,实现传感器和物体模型不确定性的鲁棒性。这两个主导的方法设计了掌握质量评分或基于锚的掌握识别网络。本文通过将其视为图像空间中的关键点检测来掌握掌握检测的不同方法。深网络检测每个掌握候选者作为一对关键点,可转换为掌握代表= {x,y,w,{\ theta}} t,而不是转角点的三态或四重奏。通过将关键点分组成对来降低检测难度提高性能。为了促进捕获关键点之间的依赖关系,将非本地模块结合到网络设计中。基于离散和连续定向预测的最终过滤策略消除了错误的对应关系,并进一步提高了掌握检测性能。此处提出的方法GKNET在康奈尔和伸缩的提花数据集上的精度和速度之间实现了良好的平衡(在41.67和23.26 fps的96.9%和98.39%)之间。操纵器上的后续实验使用4种类型的抓取实验来评估GKNet,反映不同滋扰的速度:静态抓握,动态抓握,在各种相机角度抓住,夹住。 GKNet优于静态和动态掌握实验中的参考基线,同时表现出变化的相机观点和中度杂波的稳健性。结果证实了掌握关键点是深度掌握网络的有效输出表示的假设,为预期的滋扰因素提供鲁棒性。
translated by 谷歌翻译
视觉感知任务通常需要大量的标记数据,包括3D姿势和图像空间分割掩码。创建此类培训数据集的过程可能很难或耗时,可以扩展到一般使用的功效。考虑对刚性对象的姿势估计的任务。在大型公共数据集中接受培训时,基于神经网络的深层方法表现出良好的性能。但是,将这些网络调整为其他新颖对象,或针对不同环境的现有模型进行微调,需要大量的时间投资才能产生新标记的实例。为此,我们提出了ProgressLabeller作为一种方法,以更有效地以可扩展的方式从彩色图像序列中生成大量的6D姿势训练数据。 ProgressLabeller还旨在支持透明或半透明的对象,以深度密集重建的先前方法将失败。我们通过快速创建一个超过1M样品的数据集来证明ProgressLabeller的有效性,我们将其微调一个最先进的姿势估计网络,以显着提高下游机器人的抓地力。 ProgressLabeller是https://github.com/huijiezh/progresslabeller的开放源代码。
translated by 谷歌翻译
As the basis for prehensile manipulation, it is vital to enable robots to grasp as robustly as humans. In daily manipulation, our grasping system is prompt, accurate, flexible and continuous across spatial and temporal domains. Few existing methods cover all these properties for robot grasping. In this paper, we propose a new methodology for grasp perception to enable robots these abilities. Specifically, we develop a dense supervision strategy with real perception and analytic labels in the spatial-temporal domain. Additional awareness of objects' center-of-mass is incorporated into the learning process to help improve grasping stability. Utilization of grasp correspondence across observations enables dynamic grasp tracking. Our model, AnyGrasp, can generate accurate, full-DoF, dense and temporally-smooth grasp poses efficiently, and works robustly against large depth sensing noise. Embedded with AnyGrasp, we achieve a 93.3% success rate when clearing bins with over 300 unseen objects, which is comparable with human subjects under controlled conditions. Over 900 MPPH is reported on a single-arm system. For dynamic grasping, we demonstrate catching swimming robot fish in the water.
translated by 谷歌翻译
人类和许多动物都表现出稳健的能力来操纵不同的物体,通常与他们的身体直接和有时与工具间接地进行操作。这种灵活性可能是由物理处理的基本一致性,例如接触和力闭合。通过将工具视为我们的机构的扩展来启发,我们提出了工具 - 作为实施例(TAE),用于处理同一表示空间中的手动对象和工具对象交互的基于工具的操作策略的参数化。结果是单一策略,可以在机器人上递归地应用于使用结束效果来操纵对象,并使用对象作为工具,即新的最终效果,以操纵其他对象。通过对不同实施例的共享经验进行掌握或推动,我们的政策表现出比训练单独的政策更高的性能。我们的框架可以利用将对启用工具的实施例的不同分辨率的所有经验用于每个操纵技能的单个通用策略。 https://sites.google.com/view/recursivemanipulation的视频
translated by 谷歌翻译
形状通知如何将对象掌握,无论是如何以及如何。因此,本文介绍了一种基于分割的架构,用于将用深度摄像机进行分解为多个基本形状的对象,以及用于机器人抓握的后处理管道。分段采用深度网络,称为PS-CNN,在具有6个类的原始形状和使用模拟引擎生成的合成数据上培训。每个原始形状都设计有参数化掌握家族,允许管道识别每个形状区域的多个掌握候选者。掌握是排序的排名,选择用于执行的第一个可行的。对于无任务掌握单个对象,该方法达到94.2%的成功率将其放置在顶部执行掌握方法中,与自上而下和SE(3)基础相比。涉及变量观点和杂波的其他测试展示了设置的鲁棒性。对于面向任务的掌握,PS-CNN实现了93.0%的成功率。总体而言,结果支持该假设,即在抓地管道内明确地编码形状原语应该提高掌握性能,包括无任务和任务相关的掌握预测。
translated by 谷歌翻译
如今,机器人在我们的日常生活中起着越来越重要的作用。在以人为本的环境中,机器人经常会遇到成堆的对象,包装的项目或孤立的对象。因此,机器人必须能够在各种情况下掌握和操纵不同的物体,以帮助人类进行日常任务。在本文中,我们提出了一种多视图深度学习方法,以处理以人为中心的域中抓住强大的对象。特别是,我们的方法将任意对象的点云作为输入,然后生成给定对象的拼字图。获得的视图最终用于估计每个对象的像素抓握合成。我们使用小对象抓住数据集训练模型端到端,并在模拟和现实世界数据上对其进行测试,而无需进行任何进一步的微调。为了评估所提出方法的性能,我们在三种情况下进行了广泛的实验集,包括孤立的对象,包装的项目和一堆对象。实验结果表明,我们的方法在所有仿真和现实机器人方案中都表现出色,并且能够在各种场景配置中实现新颖对象的可靠闭环抓握。
translated by 谷歌翻译
我们探索一种新的方法来感知和操纵3D铰接式物体,该物体可以概括地使机器人阐明看不见的对象。我们提出了一个基于视觉的系统,该系统学会预测各种铰接物体的各个部分的潜在运动,以指导系统的下游运动计划以表达对象。为了预测对象运动,我们训练一个神经网络,以输出一个密集的向量场,代表点云中点云中点的点运动方向。然后,我们根据该向量领域部署一个分析运动计划者,以实现产生最大发音的政策。我们完全在模拟中训练视觉系统,并演示了系统在模拟和现实世界中概括的对象实例和新颖类别的能力,并将我们的政策部署在没有任何填充的锯耶机器人上。结果表明,我们的系统在模拟和现实世界实验中都达到了最先进的性能。
translated by 谷歌翻译
成功掌握对象的能力在机器人中是至关重要的,因为它可以实现多个交互式下游应用程序。为此,大多数方法要么计算兴趣对象的完整6D姿势,要么学习预测一组掌握点。虽然前一种方法对多个对象实例或类没有很好地扩展,但后者需要大的注释数据集,并且受到新几何形状的普遍性能力差的阻碍。为了克服这些缺点,我们建议教授一个机器人如何用简单而简短的人类示范掌握一个物体。因此,我们的方法既不需要许多注释图像,也不限于特定的几何形状。我们首先介绍了一个小型RGB-D图像,显示人对象交互。然后利用该序列来构建表示所描绘的交互的相关手和对象网格。随后,我们完成重建对象形状的缺失部分,并估计了场景中的重建和可见对象之间的相对变换。最后,我们从物体和人手之间的相对姿势转移a-prioriz知识,随着当前对象在场景中的估计到机器人的必要抓握指令。与丰田的人类支持机器人(HSR)在真实和合成环境中的详尽评估证明了我们所提出的方法的适用性及其优势与以前的方法相比。
translated by 谷歌翻译
对于机器人来说,在混乱的场景中抓住检测是一项非常具有挑战性的任务。生成合成抓地数据是训练和测试抓握方法的流行方式,DEX-NET和GRASPNET也是如此。然而,这些方法在3D合成对象模型上生成了训练掌握,但是在具有不同分布的图像或点云上进行评估,从而降低了由于稀疏的掌握标签和协变量移位而在真实场景上的性能。为了解决现有的问题,我们提出了一种新型的policy抓取检测方法,该方法可以用RGB-D图像生成的密集像素级抓握标签对相同的分布进行训练和测试。提出了一种并行深度的掌握生成(PDG生成)方法,以通过并行的投射点的新成像模型生成平行的深度图像;然后,该方法为每个像素生成多个候选抓地力,并通过平坦检测,力闭合度量和碰撞检测获得可靠的抓地力。然后,构建并释放了大型综合像素级姿势数据集(PLGP数据集)。该数据集使用先前的数据集和稀疏的Grasp样品区分开,是第一个像素级掌握数据集,其上的分布分布基于深度图像生成了grasps。最后,我们建立和测试了一系列像素级的抓地力检测网络,并通过数据增强过程进行不平衡训练,该过程以输入RGB-D图像的方式学习抓握姿势。广泛的实验表明,我们的policy掌握方法可以在很大程度上克服模拟与现实之间的差距,并实现最新的性能。代码和数据可在https://github.com/liuchunsense/plgp-dataset上提供。
translated by 谷歌翻译
识别密集混乱中的物体准确地对各种机器人操纵任务发挥了重要作用,包括抓握,包装,重新安排等。但是,传统的视觉识别模型通常会因为实例之间的严重阻塞而错过对象,并且由于视觉上的歧义与高对象拥挤的歧义导致了不正确的预测。在本文中,我们提出了一个称为Smart Explorer的交互式探索框架,用于识别密集的杂物中的所有对象。我们的Smart Explorer会与混乱物进行物理互动,以最大程度地提高识别性能,同时最大程度地减少动作数量,在这种情况下,可以通过最佳的准确性效率折衷来有效地减轻误报和负面因素。具体而言,我们首先收集混乱的多视图RGB-D图像,然后重建相应的点云。通过跨视图汇总RGB图像的实例分割,我们获得了杂物的实例云分区,该杂物通过该杂物的存在和每个类的对象数量。生成有效物理互动的推动动作可大大减少由实例分割熵和多视图对象分歧组成的识别不确定性。因此,通过迭代实例预测和物理互动实现了对象识别在密集混乱中的最佳精度效率折衷。广泛的实验表明,我们的Smart Explorer仅使用几个动作获得了有希望的识别精度,这也超过了随机推动的大幅度。
translated by 谷歌翻译