Edge Federation是一种新的计算范式,无缝地互连多个边缘服务提供商的资源。此类系统中的一个关键挑战是在受约束设备中部署基于延迟和AI的资源密集型应用程序。为了应对这一挑战,我们提出了一种新型的基于记忆有效的深度学习模型,即生成优化网络(GON)。与甘斯不同,成人使用单个网络既区分输入又生成样本,从而大大降低了它们的内存足迹。利用奇数的低内存足迹,我们提出了一种称为Dragon的分散性故障耐受性方法,该方法运行模拟(按照数字建模双胞胎)来快速预测和优化边缘联邦的性能。在多个基于Raspberry-Pi的联合边缘配置上使用现实世界边缘计算基准测试的广泛实验表明,龙可以胜过故障检测和服务质量(QOS)指标的基线方法。具体而言,所提出的方法给出了与最佳深度学习方法(DL)方法更高的F1分数,而与启发式方法相比,记忆力较低。这使得违反能源消耗,响应时间和服务水平协议分别提高了74%,63%和82%。
translated by 谷歌翻译
The emergence of latency-critical AI applications has been supported by the evolution of the edge computing paradigm. However, edge solutions are typically resource-constrained, posing reliability challenges due to heightened contention for compute and communication capacities and faulty application behavior in the presence of overload conditions. Although a large amount of generated log data can be mined for fault prediction, labeling this data for training is a manual process and thus a limiting factor for automation. Due to this, many companies resort to unsupervised fault-tolerance models. Yet, failure models of this kind can incur a loss of accuracy when they need to adapt to non-stationary workloads and diverse host characteristics. To cope with this, we propose a novel modeling approach, called DeepFT, to proactively avoid system overloads and their adverse effects by optimizing the task scheduling and migration decisions. DeepFT uses a deep surrogate model to accurately predict and diagnose faults in the system and co-simulation based self-supervised learning to dynamically adapt the model in volatile settings. It offers a highly scalable solution as the model size scales by only 3 and 1 percent per unit increase in the number of active tasks and hosts. Extensive experimentation on a Raspberry-Pi based edge cluster with DeFog benchmarks shows that DeepFT can outperform state-of-the-art baseline methods in fault-detection and QoS metrics. Specifically, DeepFT gives the highest F1 scores for fault-detection, reducing service deadline violations by up to 37\% while also improving response time by up to 9%.
translated by 谷歌翻译
由于边缘设备的不可靠性以及现代应用的严格的服务截止日期,构建一个容错的边缘系统可以快速地对节点过载或故障发生的挑战是具有挑战性的。此外,不必要的任务迁移可能会强调系统网络,从而强调需要智能和解析故障恢复方案。现有方法通常无法适应高度挥发性的工作量或准确地检测和诊断故障以获得最佳修复。因此,需要一种坚固且主动的容错机制来满足服务级别目标。在这项工作中,我们提出了一种使用生成的对冲网络(GaN)的复合AI模型来预测集装箱边缘部署中的主动容错的抢占迁移决策。 Pregan使用串联的共同模拟与GaN一起学习几次异常的分类器,并主动预测可靠计算的迁移决策。基于Raspberry-PI的边缘环境的广泛实验表明,Pregan可以在故障检测,诊断和分类中优于最先进的基线方法,从而实现高质量的服务。与所考虑的基线中的最佳方法相比,Pregan完成了5.1%的准确故障检测,更高的诊断得分和23.8%的开销。
translated by 谷歌翻译
工作流程调度是一个并行和分布式计算(PDC)的长期研究,旨在有效地利用计算资源来满足用户的服务要求。最近提出的调度方法利用边缘计算平台的低响应时间来优化服务质量(QoS)。然而,由于计算异质性,移动设备的延迟以及工作负载资源要求的挥发性,因此由于计算异质性而挑战,在移动边缘云系统中的调度工作流程应用是具有挑战性的。为了克服这些困难,它是必不可少的,但同时具有挑战性,开发一种有效地模拟QoS目标的长视力优化方案。在这项工作中,我们提出了MCDS:Monte Carlo学习使用Deep代理模型来有效地安排移动边缘云计算系统中的工作流程应用。 MCD是一种基于人工智能(AI)的调度方法,它使用基于树的搜索策略和基于深度神经网络的代理模型来估计即时动作的长期QoS影响,以实现调度决策的鲁棒优化。物理和模拟边缘云试验台的实验表明,MCD在能耗,响应时间,SLA违规方面可以改善最先进的方法,违规和成本分别至少为6.13,4.56,45.09和30.71%。
translated by 谷歌翻译
最近,已经提出了使用代理模型的智能调度方法,以便在异构雾环境中有效地分配易失性任务。确定性代理模型,深神经网络(DNN)和基于梯度的优化等进步允许达到低能量消耗和响应时间。然而,确定估计优化的客观值的确定性代理模型,不考虑可以导致高服务级别协议(SLA)违规率的服务质量(QoS)目标函数的不确定性。此外,DNN训练的脆性性质,防止这些模型达到最小的能量或响应时间。为了克服这些困难,我们提出了一种新的调度程序:GOSH I.E.使用二阶衍生物和异源塑料深层代理模型的梯度优化。 GOSH使用二阶梯度基于基于梯度的优化方法来获得更好的QoS并减少迭代的次数,以收敛到调度决定,随后降低调度时间。 GOSH而不是Vanilla DNN,使用自然参数网络来近似客观分数。此外,较低的置信度优化方法可以通过采用基于误差的探索来在贪婪最小化和不确定性降低之间找到最佳权衡。因此,GOSH及其共模的扩展GOSH *可以快速调整并达到比基线方法更好的客观评分。我们表明GOSH *达到比GOSH更好的客观分数,但它仅适用于高资源可用性设置,而GOSH则适用于有限的资源设置。 GOSH和GOSH的真实系统实验*在能源消耗,响应时间和SLA分别违反最多18,27和82%的情况下,对最先进的技术进行了显着改善。
translated by 谷歌翻译
In recent years, mobile devices are equipped with increasingly advanced sensing and computing capabilities. Coupled with advancements in Deep Learning (DL), this opens up countless possibilities for meaningful applications, e.g., for medical purposes and in vehicular networks. Traditional cloudbased Machine Learning (ML) approaches require the data to be centralized in a cloud server or data center. However, this results in critical issues related to unacceptable latency and communication inefficiency. To this end, Mobile Edge Computing (MEC) has been proposed to bring intelligence closer to the edge, where data is produced. However, conventional enabling technologies for ML at mobile edge networks still require personal data to be shared with external parties, e.g., edge servers. Recently, in light of increasingly stringent data privacy legislations and growing privacy concerns, the concept of Federated Learning (FL) has been introduced. In FL, end devices use their local data to train an ML model required by the server. The end devices then send the model updates rather than raw data to the server for aggregation. FL can serve as an enabling technology in mobile edge networks since it enables the collaborative training of an ML model and also enables DL for mobile edge network optimization. However, in a large-scale and complex mobile edge network, heterogeneous devices with varying constraints are involved. This raises challenges of communication costs, resource allocation, and privacy and security in the implementation of FL at scale. In this survey, we begin with an introduction to the background and fundamentals of FL. Then, we highlight the aforementioned challenges of FL implementation and review existing solutions. Furthermore, we present the applications of FL for mobile edge network optimization. Finally, we discuss the important challenges and future research directions in FL.
translated by 谷歌翻译
近年来,随着传感器和智能设备的广泛传播,物联网(IoT)系统的数据生成速度已大大增加。在物联网系统中,必须经常处理,转换和分析大量数据,以实现各种物联网服务和功能。机器学习(ML)方法已显示出其物联网数据分析的能力。但是,将ML模型应用于物联网数据分析任务仍然面临许多困难和挑战,特别是有效的模型选择,设计/调整和更新,这给经验丰富的数据科学家带来了巨大的需求。此外,物联网数据的动态性质可能引入概念漂移问题,从而导致模型性能降解。为了减少人类的努力,自动化机器学习(AUTOML)已成为一个流行的领域,旨在自动选择,构建,调整和更新机器学习模型,以在指定任务上实现最佳性能。在本文中,我们对Automl区域中模型选择,调整和更新过程中的现有方法进行了审查,以识别和总结将ML算法应用于IoT数据分析的每个步骤的最佳解决方案。为了证明我们的发现并帮助工业用户和研究人员更好地实施汽车方法,在这项工作中提出了将汽车应用于IoT异常检测问题的案例研究。最后,我们讨论并分类了该领域的挑战和研究方向。
translated by 谷歌翻译
Video, as a key driver in the global explosion of digital information, can create tremendous benefits for human society. Governments and enterprises are deploying innumerable cameras for a variety of applications, e.g., law enforcement, emergency management, traffic control, and security surveillance, all facilitated by video analytics (VA). This trend is spurred by the rapid advancement of deep learning (DL), which enables more precise models for object classification, detection, and tracking. Meanwhile, with the proliferation of Internet-connected devices, massive amounts of data are generated daily, overwhelming the cloud. Edge computing, an emerging paradigm that moves workloads and services from the network core to the network edge, has been widely recognized as a promising solution. The resulting new intersection, edge video analytics (EVA), begins to attract widespread attention. Nevertheless, only a few loosely-related surveys exist on this topic. A dedicated venue for collecting and summarizing the latest advances of EVA is highly desired by the community. Besides, the basic concepts of EVA (e.g., definition, architectures, etc.) are ambiguous and neglected by these surveys due to the rapid development of this domain. A thorough clarification is needed to facilitate a consensus on these concepts. To fill in these gaps, we conduct a comprehensive survey of the recent efforts on EVA. In this paper, we first review the fundamentals of edge computing, followed by an overview of VA. The EVA system and its enabling techniques are discussed next. In addition, we introduce prevalent frameworks and datasets to aid future researchers in the development of EVA systems. Finally, we discuss existing challenges and foresee future research directions. We believe this survey will help readers comprehend the relationship between VA and edge computing, and spark new ideas on EVA.
translated by 谷歌翻译
Time series anomaly detection has applications in a wide range of research fields and applications, including manufacturing and healthcare. The presence of anomalies can indicate novel or unexpected events, such as production faults, system defects, or heart fluttering, and is therefore of particular interest. The large size and complex patterns of time series have led researchers to develop specialised deep learning models for detecting anomalous patterns. This survey focuses on providing structured and comprehensive state-of-the-art time series anomaly detection models through the use of deep learning. It providing a taxonomy based on the factors that divide anomaly detection models into different categories. Aside from describing the basic anomaly detection technique for each category, the advantages and limitations are also discussed. Furthermore, this study includes examples of deep anomaly detection in time series across various application domains in recent years. It finally summarises open issues in research and challenges faced while adopting deep anomaly detection models.
translated by 谷歌翻译
In recent years, deep learning (DL) models have demonstrated remarkable achievements on non-trivial tasks such as speech recognition and natural language understanding. One of the significant contributors to its success is the proliferation of end devices that acted as a catalyst to provide data for data-hungry DL models. However, computing DL training and inference is the main challenge. Usually, central cloud servers are used for the computation, but it opens up other significant challenges, such as high latency, increased communication costs, and privacy concerns. To mitigate these drawbacks, considerable efforts have been made to push the processing of DL models to edge servers. Moreover, the confluence point of DL and edge has given rise to edge intelligence (EI). This survey paper focuses primarily on the fifth level of EI, called all in-edge level, where DL training and inference (deployment) are performed solely by edge servers. All in-edge is suitable when the end devices have low computing resources, e.g., Internet-of-Things, and other requirements such as latency and communication cost are important in mission-critical applications, e.g., health care. Firstly, this paper presents all in-edge computing architectures, including centralized, decentralized, and distributed. Secondly, this paper presents enabling technologies, such as model parallelism and split learning, which facilitate DL training and deployment at edge servers. Thirdly, model adaptation techniques based on model compression and conditional computation are described because the standard cloud-based DL deployment cannot be directly applied to all in-edge due to its limited computational resources. Fourthly, this paper discusses eleven key performance metrics to evaluate the performance of DL at all in-edge efficiently. Finally, several open research challenges in the area of all in-edge are presented.
translated by 谷歌翻译
智能物联网环境(iiote)由可以协作执行半自动的IOT应用的异构装置,其示例包括高度自动化的制造单元或自主交互收获机器。能量效率是这种边缘环境中的关键,因为它们通常基于由无线和电池运行设备组成的基础设施,例如电子拖拉机,无人机,自动引导车辆(AGV)S和机器人。总能源消耗从多种技术技术汲取贡献,使得能够实现边缘计算和通信,分布式学习以及分布式分区和智能合同。本文提供了本技术的最先进的概述,并说明了它们的功能和性能,特别关注资源,延迟,隐私和能源消耗之间的权衡。最后,本文提供了一种在节能IIOTE和路线图中集成这些能力技术的愿景,以解决开放的研究挑战
translated by 谷歌翻译
联合学习(FL)和分裂学习(SL)是两种新兴的协作学习方法,可能会极大地促进物联网(IoT)中无处不在的智能。联合学习使机器学习(ML)模型在本地培训的模型使用私人数据汇总为全球模型。分裂学习使ML模型的不同部分可以在学习框架中对不同工人进行协作培训。联合学习和分裂学习,每个学习都有独特的优势和各自的局限性,可能会相互补充,在物联网中无处不在的智能。因此,联合学习和分裂学习的结合最近成为一个活跃的研究领域,引起了广泛的兴趣。在本文中,我们回顾了联合学习和拆分学习方面的最新发展,并介绍了有关最先进技术的调查,该技术用于将这两种学习方法组合在基于边缘计算的物联网环境中。我们还确定了一些开放问题,并讨论了该领域未来研究的可能方向,希望进一步引起研究界对这个新兴领域的兴趣。
translated by 谷歌翻译
计算机架构和系统已优化了很长时间,以便高效执行机器学习(ML)模型。现在,是时候重新考虑ML和系统之间的关系,并让ML转换计算机架构和系统的设计方式。这有一个双重含义:改善设计师的生产力,以及完成良性周期。在这篇论文中,我们对应用ML进行计算机架构和系统设计的工作进行了全面的审查。首先,我们考虑ML技术在架构/系统设计中的典型作用,即快速预测建模或设计方法,我们执行高级分类学。然后,我们总结了通过ML技术解决的计算机架构/系统设计中的常见问题,并且所用典型的ML技术来解决它们中的每一个。除了在狭义中强调计算机架构外,我们采用数据中心可被认为是仓库规模计算机的概念;粗略的计算机系统中提供粗略讨论,例如代码生成和编译器;我们还注意ML技术如何帮助和改造设计自动化。我们进一步提供了对机会和潜在方向的未来愿景,并设想应用ML的计算机架构和系统将在社区中蓬勃发展。
translated by 谷歌翻译
In this tutorial paper, we look into the evolution and prospect of network architecture and propose a novel conceptual architecture for the 6th generation (6G) networks. The proposed architecture has two key elements, i.e., holistic network virtualization and pervasive artificial intelligence (AI). The holistic network virtualization consists of network slicing and digital twin, from the aspects of service provision and service demand, respectively, to incorporate service-centric and user-centric networking. The pervasive network intelligence integrates AI into future networks from the perspectives of networking for AI and AI for networking, respectively. Building on holistic network virtualization and pervasive network intelligence, the proposed architecture can facilitate three types of interplay, i.e., the interplay between digital twin and network slicing paradigms, between model-driven and data-driven methods for network management, and between virtualization and AI, to maximize the flexibility, scalability, adaptivity, and intelligence for 6G networks. We also identify challenges and open issues related to the proposed architecture. By providing our vision, we aim to inspire further discussions and developments on the potential architecture of 6G.
translated by 谷歌翻译
机器学习的进步为低端互联网节点(例如微控制器)带来了新的机会,将情报带入了情报。传统的机器学习部署具有较高的记忆力,并计算足迹阻碍了其在超资源约束的微控制器上的直接部署。本文强调了为MicroController类设备启用机载机器学习的独特要求。研究人员为资源有限的应用程序使用专门的模型开发工作流程,以确保计算和延迟预算在设备限制之内,同时仍保持所需的性能。我们表征了微控制器类设备的机器学习模型开发的广泛适用的闭环工作流程,并表明几类应用程序采用了它的特定实例。我们通过展示多种用例,将定性和数值见解介绍到模型开发的不同阶段。最后,我们确定了开放的研究挑战和未解决的问题,要求仔细考虑前进。
translated by 谷歌翻译
随着数据生成越来越多地在没有连接连接的设备上进行,因此与机器学习(ML)相关的流量将在无线网络中无处不在。许多研究表明,传统的无线协议高效或不可持续以支持ML,这创造了对新的无线通信方法的需求。在这项调查中,我们对最先进的无线方法进行了详尽的审查,这些方法是专门设计用于支持分布式数据集的ML服务的。当前,文献中有两个明确的主题,模拟的无线计算和针对ML优化的数字无线电资源管理。这项调查对这些方法进行了全面的介绍,回顾了最重要的作品,突出了开放问题并讨论了应用程序方案。
translated by 谷歌翻译
随着人工智能(AI)的积极发展,基于深神经网络(DNN)的智能应用会改变人们的生活方式和生产效率。但是,从网络边缘生成的大量计算和数据成为主要的瓶颈,传统的基于云的计算模式无法满足实时处理任务的要求。为了解决上述问题,通过将AI模型训练和推理功能嵌入网络边缘,Edge Intelligence(EI)成为AI领域的尖端方向。此外,云,边缘和终端设备之间的协作DNN推断提供了一种有希望的方法来增强EI。然而,目前,以EI为导向的协作DNN推断仍处于早期阶段,缺乏对现有研究工作的系统分类和讨论。因此,我们已经对有关以EI为导向的协作DNN推断的最新研究进行了全面调查。在本文中,我们首先回顾了EI的背景和动机。然后,我们为EI分类了四个典型的DNN推理范例,并分析其特征和关键技术。最后,我们总结了协作DNN推断的当前挑战,讨论未来的发展趋势并提供未来的研究方向。
translated by 谷歌翻译
As the number of heterogenous IP-connected devices and traffic volume increase, so does the potential for security breaches. The undetected exploitation of these breaches can bring severe cybersecurity and privacy risks. Anomaly-based \acp{IDS} play an essential role in network security. In this paper, we present a practical unsupervised anomaly-based deep learning detection system called ARCADE (Adversarially Regularized Convolutional Autoencoder for unsupervised network anomaly DEtection). With a convolutional \ac{AE}, ARCADE automatically builds a profile of the normal traffic using a subset of raw bytes of a few initial packets of network flows so that potential network anomalies and intrusions can be efficiently detected before they cause more damage to the network. ARCADE is trained exclusively on normal traffic. An adversarial training strategy is proposed to regularize and decrease the \ac{AE}'s capabilities to reconstruct network flows that are out-of-the-normal distribution, thereby improving its anomaly detection capabilities. The proposed approach is more effective than state-of-the-art deep learning approaches for network anomaly detection. Even when examining only two initial packets of a network flow, ARCADE can effectively detect malware infection and network attacks. ARCADE presents 20 times fewer parameters than baselines, achieving significantly faster detection speed and reaction time.
translated by 谷歌翻译
现代深度学习应用程序需要越来越多地计算培训最先进的模型。为了解决这一需求,大型企业和机构使用专用的高性能计算集群,其建筑和维护既昂贵又远远超出大多数组织的预算。结果,一些研究方向成为几个大型工业甚至更少的学术作用者的独家领域。为了减轻这种差异,较小的团体可以汇集他们的计算资源并运行有利于所有参与者的协作实验。这种范式称为网格或志愿者计算,在众多科学领域看到了成功的应用。然而,由于高延迟,不对称带宽以及志愿者计算独特的几个挑战,使用这种用于机器学习的方法是困难的。在这项工作中,我们仔细分析了这些约束,并提出了一种专门用于协作培训的新型算法框架。我们展示了我们在现实条件下的SWAV和Albert预先预价的方法的有效性,并在成本的一小部分中实现了与传统设置相当的性能。最后,我们提供了一份成功的协作语言模型预先追溯的详细报告,有40名参与者。
translated by 谷歌翻译
使用人工智能(AI)赋予无线网络中数据量的前所未有的数据量激增,为提供无处不在的数据驱动智能服务而开辟了新的视野。通过集中收集数据集和培训模型来实现传统的云彩中心学习(ML)基础的服务。然而,这种传统的训练技术包括两个挑战:(i)由于数据通信增加而导致的高通信和能源成本,(ii)通过允许不受信任的各方利用这些信息来威胁数据隐私。最近,鉴于这些限制,一种新兴的新兴技术,包括联合学习(FL),以使ML带到无线网络的边缘。通过以分布式方式培训全局模型,可以通过FL Server策划的全局模型来提取数据孤岛的好处。 FL利用分散的数据集和参与客户的计算资源,在不影响数据隐私的情况下开发广义ML模型。在本文中,我们介绍了对FL的基本面和能够实现技术的全面调查。此外,提出了一个广泛的研究,详细说明了无线网络中的流体的各种应用,并突出了他们的挑战和局限性。进一步探索了FL的疗效,其新兴的前瞻性超出了第五代(B5G)和第六代(6G)通信系统。本调查的目的是在关键的无线技术中概述了流动的技术,这些技术将作为建立对该主题的坚定了解的基础。最后,我们向未来的研究方向提供前进的道路。
translated by 谷歌翻译