最近,已经提出了使用代理模型的智能调度方法,以便在异构雾环境中有效地分配易失性任务。确定性代理模型,深神经网络(DNN)和基于梯度的优化等进步允许达到低能量消耗和响应时间。然而,确定估计优化的客观值的确定性代理模型,不考虑可以导致高服务级别协议(SLA)违规率的服务质量(QoS)目标函数的不确定性。此外,DNN训练的脆性性质,防止这些模型达到最小的能量或响应时间。为了克服这些困难,我们提出了一种新的调度程序:GOSH I.E.使用二阶衍生物和异源塑料深层代理模型的梯度优化。 GOSH使用二阶梯度基于基于梯度的优化方法来获得更好的QoS并减少迭代的次数,以收敛到调度决定,随后降低调度时间。 GOSH而不是Vanilla DNN,使用自然参数网络来近似客观分数。此外,较低的置信度优化方法可以通过采用基于误差的探索来在贪婪最小化和不确定性降低之间找到最佳权衡。因此,GOSH及其共模的扩展GOSH *可以快速调整并达到比基线方法更好的客观评分。我们表明GOSH *达到比GOSH更好的客观分数,但它仅适用于高资源可用性设置,而GOSH则适用于有限的资源设置。 GOSH和GOSH的真实系统实验*在能源消耗,响应时间和SLA分别违反最多18,27和82%的情况下,对最先进的技术进行了显着改善。
translated by 谷歌翻译
工作流程调度是一个并行和分布式计算(PDC)的长期研究,旨在有效地利用计算资源来满足用户的服务要求。最近提出的调度方法利用边缘计算平台的低响应时间来优化服务质量(QoS)。然而,由于计算异质性,移动设备的延迟以及工作负载资源要求的挥发性,因此由于计算异质性而挑战,在移动边缘云系统中的调度工作流程应用是具有挑战性的。为了克服这些困难,它是必不可少的,但同时具有挑战性,开发一种有效地模拟QoS目标的长视力优化方案。在这项工作中,我们提出了MCDS:Monte Carlo学习使用Deep代理模型来有效地安排移动边缘云计算系统中的工作流程应用。 MCD是一种基于人工智能(AI)的调度方法,它使用基于树的搜索策略和基于深度神经网络的代理模型来估计即时动作的长期QoS影响,以实现调度决策的鲁棒优化。物理和模拟边缘云试验台的实验表明,MCD在能耗,响应时间,SLA违规方面可以改善最先进的方法,违规和成本分别至少为6.13,4.56,45.09和30.71%。
translated by 谷歌翻译
Edge Federation是一种新的计算范式,无缝地互连多个边缘服务提供商的资源。此类系统中的一个关键挑战是在受约束设备中部署基于延迟和AI的资源密集型应用程序。为了应对这一挑战,我们提出了一种新型的基于记忆有效的深度学习模型,即生成优化网络(GON)。与甘斯不同,成人使用单个网络既区分输入又生成样本,从而大大降低了它们的内存足迹。利用奇数的低内存足迹,我们提出了一种称为Dragon的分散性故障耐受性方法,该方法运行模拟(按照数字建模双胞胎)来快速预测和优化边缘联邦的性能。在多个基于Raspberry-Pi的联合边缘配置上使用现实世界边缘计算基准测试的广泛实验表明,龙可以胜过故障检测和服务质量(QOS)指标的基线方法。具体而言,所提出的方法给出了与最佳深度学习方法(DL)方法更高的F1分数,而与启发式方法相比,记忆力较低。这使得违反能源消耗,响应时间和服务水平协议分别提高了74%,63%和82%。
translated by 谷歌翻译
The emergence of latency-critical AI applications has been supported by the evolution of the edge computing paradigm. However, edge solutions are typically resource-constrained, posing reliability challenges due to heightened contention for compute and communication capacities and faulty application behavior in the presence of overload conditions. Although a large amount of generated log data can be mined for fault prediction, labeling this data for training is a manual process and thus a limiting factor for automation. Due to this, many companies resort to unsupervised fault-tolerance models. Yet, failure models of this kind can incur a loss of accuracy when they need to adapt to non-stationary workloads and diverse host characteristics. To cope with this, we propose a novel modeling approach, called DeepFT, to proactively avoid system overloads and their adverse effects by optimizing the task scheduling and migration decisions. DeepFT uses a deep surrogate model to accurately predict and diagnose faults in the system and co-simulation based self-supervised learning to dynamically adapt the model in volatile settings. It offers a highly scalable solution as the model size scales by only 3 and 1 percent per unit increase in the number of active tasks and hosts. Extensive experimentation on a Raspberry-Pi based edge cluster with DeFog benchmarks shows that DeepFT can outperform state-of-the-art baseline methods in fault-detection and QoS metrics. Specifically, DeepFT gives the highest F1 scores for fault-detection, reducing service deadline violations by up to 37\% while also improving response time by up to 9%.
translated by 谷歌翻译
由于边缘设备的不可靠性以及现代应用的严格的服务截止日期,构建一个容错的边缘系统可以快速地对节点过载或故障发生的挑战是具有挑战性的。此外,不必要的任务迁移可能会强调系统网络,从而强调需要智能和解析故障恢复方案。现有方法通常无法适应高度挥发性的工作量或准确地检测和诊断故障以获得最佳修复。因此,需要一种坚固且主动的容错机制来满足服务级别目标。在这项工作中,我们提出了一种使用生成的对冲网络(GaN)的复合AI模型来预测集装箱边缘部署中的主动容错的抢占迁移决策。 Pregan使用串联的共同模拟与GaN一起学习几次异常的分类器,并主动预测可靠计算的迁移决策。基于Raspberry-PI的边缘环境的广泛实验表明,Pregan可以在故障检测,诊断和分类中优于最先进的基线方法,从而实现高质量的服务。与所考虑的基线中的最佳方法相比,Pregan完成了5.1%的准确故障检测,更高的诊断得分和23.8%的开销。
translated by 谷歌翻译
Recently, automated co-design of machine learning (ML) models and accelerator architectures has attracted significant attention from both the industry and academia. However, most co-design frameworks either explore a limited search space or employ suboptimal exploration techniques for simultaneous design decision investigations of the ML model and the accelerator. Furthermore, training the ML model and simulating the accelerator performance is computationally expensive. To address these limitations, this work proposes a novel neural architecture and hardware accelerator co-design framework, called CODEBench. It is composed of two new benchmarking sub-frameworks, CNNBench and AccelBench, which explore expanded design spaces of convolutional neural networks (CNNs) and CNN accelerators. CNNBench leverages an advanced search technique, BOSHNAS, to efficiently train a neural heteroscedastic surrogate model to converge to an optimal CNN architecture by employing second-order gradients. AccelBench performs cycle-accurate simulations for a diverse set of accelerator architectures in a vast design space. With the proposed co-design method, called BOSHCODE, our best CNN-accelerator pair achieves 1.4% higher accuracy on the CIFAR-10 dataset compared to the state-of-the-art pair, while enabling 59.1% lower latency and 60.8% lower energy consumption. On the ImageNet dataset, it achieves 3.7% higher Top1 accuracy at 43.8% lower latency and 11.2% lower energy consumption. CODEBench outperforms the state-of-the-art framework, i.e., Auto-NBA, by achieving 1.5% higher accuracy and 34.7x higher throughput, while enabling 11.0x lower energy-delay product (EDP) and 4.0x lower chip area on CIFAR-10.
translated by 谷歌翻译
Emerging real-time multi-model ML (RTMM) workloads such as AR/VR and drone control often involve dynamic behaviors in various levels; task, model, and layers (or, ML operators) within a model. Such dynamic behaviors are new challenges to the system software in an ML system because the overall system load is unpredictable unlike traditional ML workloads. Also, the real-time processing requires to meet deadlines, and multi-model workloads involve highly heterogeneous models. As RTMM workloads often run on resource-constrained devices (e.g., VR headset), developing an effective scheduler is an important research problem. Therefore, we propose a new scheduler, SDRM3, that effectively handles various dynamicity in RTMM style workloads targeting multi-accelerator systems. To make scheduling decisions, SDRM3 quantifies the unique requirements for RTMM workloads and utilizes the quantified scores to drive scheduling decisions, considering the current system load and other inference jobs on different models and input frames. SDRM3 has tunable parameters that provide fast adaptivity to dynamic workload changes based on a gradient descent-like online optimization, which typically converges within five steps for new workloads. In addition, we also propose a method to exploit model level dynamicity based on Supernet for exploiting the trade-off between the scheduling effectiveness and model performance (e.g., accuracy), which dynamically selects a proper sub-network in a Supernet based on the system loads. In our evaluation on five realistic RTMM workload scenarios, SDRM3 reduces the overall UXCost, which is a energy-delay-product (EDP)-equivalent metric for real-time applications defined in the paper, by 37.7% and 53.2% on geometric mean (up to 97.6% and 97.1%) compared to state-of-the-art baselines, which shows the efficacy of our scheduling methodology.
translated by 谷歌翻译
我们为处理顺序决策和外在不确定性的应用程序开发了增强学习(RL)框架,例如资源分配和库存管理。在这些应用中,不确定性仅由于未来需求等外源变量所致。一种流行的方法是使用历史数据预测外源变量,然后对预测进行计划。但是,这种间接方法需要对外源过程进行高保真模型,以确保良好的下游决策,当外源性过程复杂时,这可能是不切实际的。在这项工作中,我们提出了一种基于事后观察学习的替代方法,该方法避开了对外源过程进行建模的建模。我们的主要见解是,与Sim2real RL不同,我们可以在历史数据中重新审视过去的决定,并在这些应用程序中对其他动作产生反事实后果。我们的框架将事后最佳的行动用作政策培训信号,并在决策绩效方面具有强大的理论保证。我们使用框架开发了一种算法,以分配计算资源,以用于现实世界中的Microsoft Azure工作负载。结果表明,我们的方法比域特异性的启发式方法和SIM2REAL RL基准学习更好的政策。
translated by 谷歌翻译
由于数据量增加,金融业的快速变化已经彻底改变了数据处理和数据分析的技术,并带来了新的理论和计算挑战。与古典随机控制理论和解决财务决策问题的其他分析方法相比,解决模型假设的财务决策问题,强化学习(RL)的新发展能够充分利用具有更少模型假设的大量财务数据并改善复杂的金融环境中的决策。该调查纸目的旨在审查最近的资金途径的发展和使用RL方法。我们介绍了马尔可夫决策过程,这是许多常用的RL方法的设置。然后引入各种算法,重点介绍不需要任何模型假设的基于价值和基于策略的方法。连接是用神经网络进行的,以扩展框架以包含深的RL算法。我们的调查通过讨论了这些RL算法在金融中各种决策问题中的应用,包括最佳执行,投资组合优化,期权定价和对冲,市场制作,智能订单路由和Robo-Awaring。
translated by 谷歌翻译
This paper studies a model for online job scheduling in green datacenters. In green datacenters, resource availability depends on the power supply from the renewables. Intermittent power supply from renewables leads to intermittent resource availability, inducing job delays (and associated costs). Green datacenter operators must intelligently manage their workloads and available power supply to extract maximum benefits. The scheduler's objective is to schedule jobs on a set of resources to maximize the total value (revenue) while minimizing the overall job delay. A trade-off exists between achieving high job value on the one hand and low expected delays on the other. Hence, the aims of achieving high rewards and low costs are in opposition. In addition, datacenter operators often prioritize multiple objectives, including high system utilization and job completion. To accomplish the opposing goals of maximizing total job value and minimizing job delays, we apply the Proportional-Integral-Derivative (PID) Lagrangian methods in Deep Reinforcement Learning to job scheduling problem in the green datacenter environment. Lagrangian methods are widely used algorithms for constrained optimization problems. We adopt a controls perspective to learn the Lagrange multiplier with proportional, integral, and derivative control, achieving favorable learning dynamics. Feedback control defines cost terms for the learning agent, monitors the cost limits during training, and continuously adjusts the learning parameters to achieve stable performance. Our experiments demonstrate improved performance compared to scheduling policies without the PID Lagrangian methods. Experimental results illustrate the effectiveness of the Constraint Controlled Reinforcement Learning (CoCoRL) scheduler that simultaneously satisfies multiple objectives.
translated by 谷歌翻译
随着数据生成越来越多地在没有连接连接的设备上进行,因此与机器学习(ML)相关的流量将在无线网络中无处不在。许多研究表明,传统的无线协议高效或不可持续以支持ML,这创造了对新的无线通信方法的需求。在这项调查中,我们对最先进的无线方法进行了详尽的审查,这些方法是专门设计用于支持分布式数据集的ML服务的。当前,文献中有两个明确的主题,模拟的无线计算和针对ML优化的数字无线电资源管理。这项调查对这些方法进行了全面的介绍,回顾了最重要的作品,突出了开放问题并讨论了应用程序方案。
translated by 谷歌翻译
计算机架构和系统已优化了很长时间,以便高效执行机器学习(ML)模型。现在,是时候重新考虑ML和系统之间的关系,并让ML转换计算机架构和系统的设计方式。这有一个双重含义:改善设计师的生产力,以及完成良性周期。在这篇论文中,我们对应用ML进行计算机架构和系统设计的工作进行了全面的审查。首先,我们考虑ML技术在架构/系统设计中的典型作用,即快速预测建模或设计方法,我们执行高级分类学。然后,我们总结了通过ML技术解决的计算机架构/系统设计中的常见问题,并且所用典型的ML技术来解决它们中的每一个。除了在狭义中强调计算机架构外,我们采用数据中心可被认为是仓库规模计算机的概念;粗略的计算机系统中提供粗略讨论,例如代码生成和编译器;我们还注意ML技术如何帮助和改造设计自动化。我们进一步提供了对机会和潜在方向的未来愿景,并设想应用ML的计算机架构和系统将在社区中蓬勃发展。
translated by 谷歌翻译
混合精确的深神经网络达到了硬件部署所需的能源效率和吞吐量,尤其是在资源有限的情况下,而无需牺牲准确性。但是,不容易找到保留精度的最佳每层钻头精度,尤其是在创建巨大搜索空间的大量模型,数据集和量化技术中。为了解决这一困难,最近出现了一系列文献,并且已经提出了一些实现有希望的准确性结果的框架。在本文中,我们首先总结了文献中通常使用的量化技术。然后,我们对混合精液框架进行了彻底的调查,该调查是根据其优化技术进行分类的,例如增强学习和量化技术,例如确定性舍入。此外,讨论了每个框架的优势和缺点,我们在其中呈现并列。我们最终为未来的混合精液框架提供了指南。
translated by 谷歌翻译
大多数机器学习算法由一个或多个超参数配置,必须仔细选择并且通常会影响性能。为避免耗时和不可递销的手动试验和错误过程来查找性能良好的超参数配置,可以采用各种自动超参数优化(HPO)方法,例如,基于监督机器学习的重新采样误差估计。本文介绍了HPO后,本文审查了重要的HPO方法,如网格或随机搜索,进化算法,贝叶斯优化,超带和赛车。它给出了关于进行HPO的重要选择的实用建议,包括HPO算法本身,性能评估,如何将HPO与ML管道,运行时改进和并行化结合起来。这项工作伴随着附录,其中包含关于R和Python的特定软件包的信息,以及用于特定学习算法的信息和推荐的超参数搜索空间。我们还提供笔记本电脑,这些笔记本展示了这项工作的概念作为补充文件。
translated by 谷歌翻译
蒙特卡洛树搜索(MCT)是设计游戏机器人或解决顺序决策问题的强大方法。该方法依赖于平衡探索和开发的智能树搜索。MCT以模拟的形式进行随机抽样,并存储动作的统计数据,以在每个随后的迭代中做出更有教育的选择。然而,该方法已成为组合游戏的最新技术,但是,在更复杂的游戏(例如那些具有较高的分支因素或实时系列的游戏)以及各种实用领域(例如,运输,日程安排或安全性)有效的MCT应用程序通常需要其与问题有关的修改或与其他技术集成。这种特定领域的修改和混合方法是本调查的主要重点。最后一项主要的MCT调查已于2012年发布。自发布以来出现的贡献特别感兴趣。
translated by 谷歌翻译
背景信息:在过去几年中,机器学习(ML)一直是许多创新的核心。然而,包括在所谓的“安全关键”系统中,例如汽车或航空的系统已经被证明是非常具有挑战性的,因为ML的范式转变为ML带来完全改变传统认证方法。目的:本文旨在阐明与ML为基础的安全关键系统认证有关的挑战,以及文献中提出的解决方案,以解决它们,回答问题的问题如何证明基于机器学习的安全关键系统?'方法:我们开展2015年至2020年至2020年之间发布的研究论文的系统文献综述(SLR),涵盖了与ML系统认证有关的主题。总共确定了217篇论文涵盖了主题,被认为是ML认证的主要支柱:鲁棒性,不确定性,解释性,验证,安全强化学习和直接认证。我们分析了每个子场的主要趋势和问题,并提取了提取的论文的总结。结果:单反结果突出了社区对该主题的热情,以及在数据集和模型类型方面缺乏多样性。它还强调需要进一步发展学术界和行业之间的联系,以加深域名研究。最后,它还说明了必须在上面提到的主要支柱之间建立连接的必要性,这些主要柱主要主要研究。结论:我们强调了目前部署的努力,以实现ML基于ML的软件系统,并讨论了一些未来的研究方向。
translated by 谷歌翻译
这本数字本书包含在物理模拟的背景下与深度学习相关的一切实际和全面的一切。尽可能多,所有主题都带有Jupyter笔记本的形式的动手代码示例,以便快速入门。除了标准的受监督学习的数据中,我们将看看物理丢失约束,更紧密耦合的学习算法,具有可微分的模拟,以及加强学习和不确定性建模。我们生活在令人兴奋的时期:这些方法具有从根本上改变计算机模拟可以实现的巨大潜力。
translated by 谷歌翻译
贝叶斯优化(BO)是一种用于计算昂贵的黑盒优化的方法,例如模拟器校准和深度学习方法的超参数优化。在BO中,采用动态更新的计算廉价替代模型来学习黑框函数的投入输出关系。该替代模型用于探索和利用输入空间的有前途的区域。多点BO方法采用单个经理/多个工人策略,以在较短的时间内实现高质量的解决方案。但是,多点生成方案中的计算开销是设计BO方法的主要瓶颈,可以扩展到数千名工人。我们提出了一种异步分配的BO(ADBO)方法,其中每个工人都会运行搜索,并异步地传达所有其他没有经理的工人的黑框评估的输入输出值。我们将方法扩展到4,096名工人,并证明了解决方案质量和更快的收敛质量。我们证明了我们从Exascale计算项目烛台基准调整神经网络超参数的方法的有效性。
translated by 谷歌翻译
石油场和地震成像的储层模拟被称为石油和天然气(O&G)行业中高性能计算(HPC)最苛刻的工作量。模拟器数值参数的优化起着至关重要的作用,因为它可以节省大量的计算工作。最先进的优化技术基于运行大量模拟,特定于该目的,以找到良好的参数候选者。但是,在时间和计算资源方面,使用这种方法的成本高昂。这项工作提出了金枪鱼,这是一种新方法,可增强使用性能模型的储层流仿真的最佳数值参数的搜索。在O&G行业中,通常使用不同工作流程中的模型合奏来减少与预测O&G生产相关的不确定性。我们利用此类工作流程中这些合奏的运行来从每个模拟中提取信息,并在其后续运行中优化数值参数。为了验证该方法,我们在历史匹配(HM)过程中实现了它,该过程使用Kalman滤波器算法来调整储层模型的集合以匹配实际字段中观察到的数据。我们从许多具有不同数值配置的模拟中挖掘了过去的执行日志,并根据数据提取的功能构建机器学习模型。这些功能包括储层模型本身的属性,例如活动单元的数量,即模拟行为的统计数据,例如线性求解器的迭代次数。采样技术用于查询甲骨文以找到可以减少经过的时间的数值参数,而不会显着影响结果的质量。我们的实验表明,预测可以平均将HM工作流程运行时提高31%。
translated by 谷歌翻译
培训深度神经网络(DNNS)每年都会变得越来越多地资源和能源密集型。不幸的是,现有作品主要集中于优化DNN培训以更快完成,而无需考虑对能源效率的影响。在本文中,我们观察到改善训练绩效的常见实践通常会导致能源使用效率低下。更重要的是,我们证明能耗和性能优化之间存在权衡。为此,我们提出了一个优化框架,宙斯,通过自动找到重复出现的DNN培训工作的最佳作业和GPU级配置来导航这种权衡。宙斯与即时的能源分析一起使用了在线探索 - 开发方法,避免了对昂贵的离线测量的需求,同时适应数据随着时间的流逝。我们的评估表明,宙斯可以将DNN培训的能源效率提高15.3%-75.8%,以减少75.8%。
translated by 谷歌翻译