In computational advertising, a challenging problem is how to recommend the bid for advertisers to achieve the best return on investment (ROI) given budget constraint. This paper presents a bid recommendation scenario that discovers the concavity changes in click prediction curves. The recommended bid is derived based on the turning point from significant increase (i.e. concave downward) to slow increase (convex upward). Parametric learning based method is applied by solving the corresponding constraint optimization problem. Empirical studies on real-world advertising scenarios clearly demonstrate the performance gains for business metrics (including revenue increase, click increase and advertiser ROI increase).
translated by 谷歌翻译
In cost-per-click (CPC) or cost-per-impression (CPM) advertising campaigns, advertisers always run the risk of spending the budget without getting enough conversions. Moreover, the bidding on advertising inventory has few connections with propensity one that can reach to target cost-per-acquisition (tCPA) goals. To address this problem, this paper presents a bid optimization scenario to achieve the desired tCPA goals for advertisers. In particular, we build the optimization engine to make a decision by solving the rigorously formalized constrained optimization problem, which leverages the bid landscape model learned from rich historical auction data using non-parametric learning. The proposed model can naturally recommend the bid that meets the advertisers' expectations by making inference over advertisers' historical auction behaviors, which essentially deals with the data challenges commonly faced by bid landscape modeling: incomplete logs in auctions, and uncertainty due to the variation and fluctuations in advertising bidding behaviors. The bid optimization model outperforms the baseline methods on real-world campaigns, and has been applied into a wide range of scenarios for performance improvement and revenue liftup.
translated by 谷歌翻译
实时竞标是编程广告的新范式。广告商希望做出使用\ textbf {需求端平台}来提高其广告活动的性能的聪明选择。现有的方法正在努力为由于随机招标行为而为优化提供令人满意的解决方案。在本文中,我们提出了具有功能优化的RTB的多代理增强学习体系结构。我们设计了四个代理商竞标环境:基于三个Lagrange-Multiplier的功能优化代理和一个基线代理(没有功能优化的任何属性)首先,已将许多属性分配给每个代理,包括偏见或无偏的胜利概率,Lagrange乘数,然后单击单击 - 通过率。为了评估拟议的RTB策略的性能,我们证明了十个顺序模拟拍卖活动的结果。结果表明,具有功能性动作和奖励的代理商分别具有偏见和公正的获胜信息,具有最重要的平均获胜率和赢得盈余。实验评估表明,我们的方法显着提高了运动的功效和盈利能力。
translated by 谷歌翻译
Consensus clustering aggregates partitions in order to find a better fit by reconciling clustering results from different sources/executions. In practice, there exist noise and outliers in clustering task, which, however, may significantly degrade the performance. To address this issue, we propose a novel algorithm -- robust consensus clustering that can find common ground truth among experts' opinions, which tends to be minimally affected by the bias caused by the outliers. In particular, we formalize the robust consensus clustering problem as a constraint optimization problem, and then derive an effective algorithm upon alternating direction method of multipliers (ADMM) with rigorous convergence guarantee. Our method outperforms the baselines on benchmarks. We apply the proposed method to the real-world advertising campaign segmentation and forecasting tasks using the proposed consensus clustering results based on the similarity computed via Kolmogorov-Smirnov Statistics. The accurate clustering result is helpful for building the advertiser profiles so as to perform the forecasting.
translated by 谷歌翻译
在线实时竞标(RTB)是一款复杂的拍卖游戏,广告商在发生用户请求时很难为广告印象出价。考虑到显示成本,投资回报率(ROI)和其他有影响力的关键绩效指标(KPI),大型广告平台试图平衡动态各个目标之间的权衡。为了应对挑战,我们提出了一种基于强化学习(RL)的多目标参与者侵犯算法,名为Motiac,因为它具有各种目标的优化问题。在MOTIAC中,特定于特定的代理商具有不同的目标和观点的异步更新全球网络,从而实现了强大的招标政策。与以前的RL模型不同,所提出的MOTIAC可以同时完成复杂的招标环境中的多目标任务。此外,我们在数学上证明我们的模型将收敛到帕累托最优性。最后,从腾讯上进行大规模真实世界的商业数据集进行实验,验证了Motiac的有效性与一系列最近的方法
translated by 谷歌翻译
实时投标(RTB)是现代在线广告系统中的重要机制。广告商在RTB中采用投标策略来优化其广告效果,但根据各种财务要求,其中广泛采用的是投资回报(ROI)约束。在顺序招标过程中,ROI在非单调的情况下变化,通常在约束满意度和客观优化之间具有透视作用。通常在静态或轻微变化的市场中建立了约束 - 目标权衡解决方案。但是,由于无法适应不同的动态和部分可观察性,这些方法在非平稳广告市场中大大失败。在这项工作中,我们专门研究非机构市场的ROI限制招标。基于部分可观察到的马尔可夫决策过程,我们提出了第一个容纳非单调约束的硬屏障解决方案。我们的方法利用了无参数指标的奖励功能,并开发了课程指导的贝叶斯强化学习(CBRL)框架,以适应在非平稳广告市场中的约束目标权衡。在具有两个问题设置的大规模工业数据集上进行的广泛实验表明,CBRL在分布和分发数据制度方面都很好地概括了,并且具有出色的稳定性。
translated by 谷歌翻译
在电子商务平台中,如果赞助搜索显示出意外的广告项目,则用户不太可能使用有机搜索,这将是该平台的隐藏成本。为了将隐藏成本纳入拍卖机制,这有助于为该平台创造积极的增长,我们转向储备价设计,以决定我们是否出售流量,并在收入和用户体验之间建立健康的关系。我们提出了一个动态的储备价格设计框架,以更有效地销售流量,并以最低的用户体验成本销售流量,同时向广告商保留长期激励措施,以真实地揭示其估值。还提出了分布式算法在生产环境中使用十亿个比例数据计算储备价。离线评估和在线AB测试的实验表明,这是一种简单有效的方法,可适当地用于工业生产中。它已经完全部署在Lazada赞助的搜索的生产中。
translated by 谷歌翻译
节流是当今在线广告市场中最受欢迎的预算控制方法之一。当一个受预算受限的广告商雇用节流功能时,她可以在广告平台建议出价后选择是否参加拍卖。本文重点介绍了从理论观点重复的第二价格拍卖中的动态预算节流过程。潜在问题的一个重要特征是,广告商不知道进入市场时竞争最高的出价。为了模拟消除这种不确定性的困难,我们考虑了两种不同的信息结构。广告商可以通过全信息反馈获得每轮竞争最高的投标。同时,通过部分信息反馈,广告商只能在她参加的拍卖中获得最高竞争的出价。我们提出了OGD-CB算法,该算法涉及在线广告查询面临的同时分配学习和收入优化。在这两种情况下,我们都证明该算法保证了$ O(\ sqrt {t \ log t})$遗憾,概率$ 1- o(1/t)$相对于流体自适应节流基准。通过证明$ \ omega(\ sqrt {t})$的下限在最小的后悔中,即使是最佳的最佳选择,我们就建立了算法的近乎最佳性。最后,我们将节流的最佳流体最佳与起搏相提并论,这是另一种广泛采用的预算控制方法。这些基准的数值关系使我们对不同的在线算法进行预算管理的比较有了进一步的见解。
translated by 谷歌翻译
使用历史观察数据的政策学习是发现广泛应用程序的重要问题。示例包括选择优惠,价格,要发送给客户的广告,以及选择要开出患者的药物。但是,现有的文献取决于这样一个关键假设,即将在未来部署学习策略的未来环境与生成数据的过去环境相同 - 这个假设通常是错误或太粗糙的近似值。在本文中,我们提高了这一假设,并旨在通过不完整的观察数据来学习一项稳健的策略。我们首先提出了一个政策评估程序,该程序使我们能够评估政策在最坏情况下的转变下的表现。然后,我们为此建议的政策评估计划建立了中心限制定理类型保证。利用这种评估方案,我们进一步提出了一种新颖的学习算法,该算法能够学习一项对对抗性扰动和未知协变量转移的策略,并根据统一收敛理论的性能保证进行了绩效保证。最后,我们从经验上测试了合成数据集中提出的算法的有效性,并证明它提供了使用标准策略学习算法缺失的鲁棒性。我们通过在现实世界投票数据集的背景下提供了我们方法的全面应用来结束本文。
translated by 谷歌翻译
机器学习渗透到许多行业,这为公司带来了新的利益来源。然而,在人寿保险行业中,机器学习在实践中并未被广泛使用,因为在过去几年中,统计模型表明了它们的风险评估效率。因此,保险公司可能面临评估人工智能价值的困难。随着时间的流逝,专注于人寿保险行业的修改突出了将机器学习用于保险公司的利益以及通过释放数据价值带来的利益。本文回顾了传统的生存建模方法论,并通过机器学习技术扩展了它们。它指出了与常规机器学习模型的差异,并强调了特定实现在与机器学习模型家族中面对审查数据的重要性。在本文的补充中,已经开发了Python库。已经调整了不同的开源机器学习算法,以适应人寿保险数据的特殊性,即检查和截断。此类模型可以轻松地从该SCOR库中应用,以准确地模拟人寿保险风险。
translated by 谷歌翻译
Algorithms that involve both forecasting and optimization are at the core of solutions to many difficult real-world problems, such as in supply chains (inventory optimization), traffic, and in the transition towards carbon-free energy generation in battery/load/production scheduling in sustainable energy systems. Typically, in these scenarios we want to solve an optimization problem that depends on unknown future values, which therefore need to be forecast. As both forecasting and optimization are difficult problems in their own right, relatively few research has been done in this area. This paper presents the findings of the ``IEEE-CIS Technical Challenge on Predict+Optimize for Renewable Energy Scheduling," held in 2021. We present a comparison and evaluation of the seven highest-ranked solutions in the competition, to provide researchers with a benchmark problem and to establish the state of the art for this benchmark, with the aim to foster and facilitate research in this area. The competition used data from the Monash Microgrid, as well as weather data and energy market data. It then focused on two main challenges: forecasting renewable energy production and demand, and obtaining an optimal schedule for the activities (lectures) and on-site batteries that lead to the lowest cost of energy. The most accurate forecasts were obtained by gradient-boosted tree and random forest models, and optimization was mostly performed using mixed integer linear and quadratic programming. The winning method predicted different scenarios and optimized over all scenarios jointly using a sample average approximation method.
translated by 谷歌翻译
Decision-making problems are commonly formulated as optimization problems, which are then solved to make optimal decisions. In this work, we consider the inverse problem where we use prior decision data to uncover the underlying decision-making process in the form of a mathematical optimization model. This statistical learning problem is referred to as data-driven inverse optimization. We focus on problems where the underlying decision-making process is modeled as a convex optimization problem whose parameters are unknown. We formulate the inverse optimization problem as a bilevel program and propose an efficient block coordinate descent-based algorithm to solve large problem instances. Numerical experiments on synthetic datasets demonstrate the computational advantage of our method compared to standard commercial solvers. Moreover, the real-world utility of the proposed approach is highlighted through two realistic case studies in which we consider estimating risk preferences and learning local constraint parameters of agents in a multiplayer Nash bargaining game.
translated by 谷歌翻译
价格歧视,这是指为不同客户群体的不同价格进行规定的策略,已广泛用于在线零售。虽然它有助于提高在线零售商的收入,但它可能会对公平产生严重关切,甚至违反了监管和法律。本文研究了公平限制下动态歧视性定价的问题。特别是,我们考虑一个有限的销售长度$ T $的单一产品,为一组客户提供两组客户。每组客户都有其未知的需求功能,需要学习。对于每个销售期间,卖方确定每组的价格并观察其购买行为。虽然现有文学主要侧重于最大化收入,但在动态定价文学中确保不同客户的公平尚未完全探索。在这项工作中,我们采用了(Cohen等人)的公平概念。对于价格公平性,我们在遗憾方面提出了最佳的动态定价政策,从而强制执行严格的价格公平制约。与标准$ \ sqrt {t} $ - 在线学习中的遗憾遗憾,我们表明我们案例中的最佳遗憾是$ \ tilde {\ theta}(t ^ {4/5})$。我们进一步将算法扩展到更普遍的公平概念,包括作为一个特例的需求公平。为了处理这一普通类,我们提出了一个柔和的公平约束,并开发了实现$ \ tilde {o}(t ^ {4/5})$后悔的动态定价政策。
translated by 谷歌翻译
关于日益增长的直播媒介的一种普遍信念是,其价值在于其“实时”组成部分。我们通过比较实时事件需求的价格弹性如何在直播中和之后的生活中进行了比较,从而研究了这种信念。我们使用来自大型直播平台的独特且丰富的数据来做到这一点,该数据使消费者可以在流中期后购买录制版本的直播版本。在我们背景下的一个挑战是,存在高维混杂因素,其与治疗政策(即价格)和兴趣结果(即需求)的关系是复杂的,并且仅部分知道。我们通过使用广义正交随机森林框架来解决这一挑战,以进行异质治疗效果估计。我们发现在整个事件生命周期中,需求价格弹性的时间弹性都显着。具体而言,随着时间的流逝,需求变得越来越敏感,直到直播一天,那天就变成了无弹性。在生活后的时期,对录制版本的需求仍然对价格敏感,但远低于在播放前的时期。我们进一步表明,价格弹性的这种时间变化是由此类事件固有的质量不确定性以及在直播过程中与内容创建者进行实时互动的机会所驱动的。
translated by 谷歌翻译
本文研究了是否可以学习发挥最佳动作,同时仅了解环境的真实规范的一部分。我们选择最佳定价问题作为我们的实验室,在该实验室中,垄断者被赋予了市场需求的指定模型,但可以观察到市场成果。与传统的学习模型相反,模型规范是完整且外源固定的,垄断者必须从数据中学习需求曲线的规范和参数。我们将学习动态制定为一种算法,根据机器学习文献(Shalev-Shwartz and Ben-David(2014)),根据数据预测最佳价格。受PAC可学习性的启发,我们通过要求该算法必须在与真实规范部分一致的模型类别中均匀量的数据统一的数据产生准确的预测来开发新的可学习性概念。此外,我们假设垄断者对算法的回报和复杂性成本具有词典偏好,以寻求具有最少数量参数的算法,而这些算法受到PAC保证最佳解决方案(Rubinstein(Rubinstein(1986)))。我们表明,对于一组需求曲线,严格减少Lipschitz连续边际收入曲线,最佳算法也会递归估算线性需求曲线的斜率和截距,即使实际需求曲线不是线性的。垄断者选择了一个错误的模型来节省计算成本,同时在一组未指定的需求曲线上统一地学习真正的最佳决策。
translated by 谷歌翻译
由于数据量增加,金融业的快速变化已经彻底改变了数据处理和数据分析的技术,并带来了新的理论和计算挑战。与古典随机控制理论和解决财务决策问题的其他分析方法相比,解决模型假设的财务决策问题,强化学习(RL)的新发展能够充分利用具有更少模型假设的大量财务数据并改善复杂的金融环境中的决策。该调查纸目的旨在审查最近的资金途径的发展和使用RL方法。我们介绍了马尔可夫决策过程,这是许多常用的RL方法的设置。然后引入各种算法,重点介绍不需要任何模型假设的基于价值和基于策略的方法。连接是用神经网络进行的,以扩展框架以包含深的RL算法。我们的调查通过讨论了这些RL算法在金融中各种决策问题中的应用,包括最佳执行,投资组合优化,期权定价和对冲,市场制作,智能订单路由和Robo-Awaring。
translated by 谷歌翻译
We consider the problem of dynamic pricing of a product in the presence of feature-dependent price sensitivity. Developing practical algorithms that can estimate price elasticities robustly, especially when information about no purchases (losses) is not available, to drive such automated pricing systems is a challenge faced by many industries. Based on the Poisson semi-parametric approach, we construct a flexible yet interpretable demand model where the price related part is parametric while the remaining (nuisance) part of the model is non-parametric and can be modeled via sophisticated machine learning (ML) techniques. The estimation of price-sensitivity parameters of this model via direct one-stage regression techniques may lead to biased estimates due to regularization. To address this concern, we propose a two-stage estimation methodology which makes the estimation of the price-sensitivity parameters robust to biases in the estimators of the nuisance parameters of the model. In the first-stage we construct estimators of observed purchases and prices given the feature vector using sophisticated ML estimators such as deep neural networks. Utilizing the estimators from the first-stage, in the second-stage we leverage a Bayesian dynamic generalized linear model to estimate the price-sensitivity parameters. We test the performance of the proposed estimation schemes on simulated and real sales transaction data from the Airline industry. Our numerical studies demonstrate that our proposed two-stage approach reduces the estimation error in price-sensitivity parameters from 25\% to 4\% in realistic simulation settings. The two-stage estimation techniques proposed in this work allows practitioners to leverage modern ML techniques to robustly estimate price-sensitivities while still maintaining interpretability and allowing ease of validation of its various constituent parts.
translated by 谷歌翻译
我们提出了仅使用总人群统计数据来推断给定分类器的公平性和准确性的方法。当无法获得单个分类数据时,例如,当无法访问分类器或代表性的个人级验证集时,这是必要的。我们研究有关均衡的赔率标准的公平性,我们将其推广到多类分类。我们提出了有关该标准的不公平性的度量,该标准量化了不公平处理的人群的比例。然后,我们显示如何仅使用汇总标签统计信息(例如每个子人群中每个标签的预测率,以及每个标签的真实速率),如何获得给定分类器的不公平和误差的推断。我们为二进制分类器和多类分类器提供了推理程序,对于每个子人群中的混淆矩阵以及未知的情况下更具挑战性的情况而言。我们报告了代表不同应用的数据集的实验,这些实验证明了所提出方法的有效性和广泛使用。
translated by 谷歌翻译
在随着时间变化的组合环境中的在线决策激励,我们研究了将离线算法转换为其在线对应物的问题。我们专注于使用贪婪算法对局部错误的贪婪算法进行恒定因子近似的离线组合问题。对于此类问题,我们提供了一个通用框架,该框架可有效地将稳健的贪婪算法转换为使用Blackwell的易近算法。我们证明,在完整信息设置下,由此产生的在线算法具有$ O(\ sqrt {t})$(近似)遗憾。我们进一步介绍了Blackwell易接近性的强盗扩展,我们称之为Bandit Blackwell的可接近性。我们利用这一概念将贪婪的稳健离线算法转变为匪(t^{2/3})$(近似)$(近似)的遗憾。展示了我们框架的灵活性,我们将脱机之间的转换应用于收入管理,市场设计和在线优化的几个问题,包括在线平台中的产品排名优化,拍卖中的储备价格优化以及supperular tossodular最大化。 。我们还将还原扩展到连续优化的类似贪婪的一阶方法,例如用于最大化连续强的DR单调下调功能,这些功能受到凸约束的约束。我们表明,当应用于这些应用程序时,我们的转型会导致新的后悔界限或改善当前已知界限。我们通过为我们的两个应用进行数值模拟来补充我们的理论研究,在这两种应用中,我们都观察到,转换的数值性能在实际情况下优于理论保证。
translated by 谷歌翻译
向潜在客户展示广告而不是通常称为“增量”的因果效应是广告有效性的基本问题。在数字广告中,三个主要难题对于严格量化广告增量的核心:广告购买/竞标/定价,归因和实验。在机器学习和因果计量经济学基础的基础上,我们提出了一种方法,将这三个概念统一为竞标和归因的计算可行模型,该模型涵盖了广告效应的随机化,培训,交叉验证,评分,评分和转换归因。这种方法的实施很可能可以确保广告回报率的重大改善。
translated by 谷歌翻译