实时竞标是编程广告的新范式。广告商希望做出使用\ textbf {需求端平台}来提高其广告活动的性能的聪明选择。现有的方法正在努力为由于随机招标行为而为优化提供令人满意的解决方案。在本文中,我们提出了具有功能优化的RTB的多代理增强学习体系结构。我们设计了四个代理商竞标环境:基于三个Lagrange-Multiplier的功能优化代理和一个基线代理(没有功能优化的任何属性)首先,已将许多属性分配给每个代理,包括偏见或无偏的胜利概率,Lagrange乘数,然后单击单击 - 通过率。为了评估拟议的RTB策略的性能,我们证明了十个顺序模拟拍卖活动的结果。结果表明,具有功能性动作和奖励的代理商分别具有偏见和公正的获胜信息,具有最重要的平均获胜率和赢得盈余。实验评估表明,我们的方法显着提高了运动的功效和盈利能力。
translated by 谷歌翻译
我们研究了竞争激烈的马尔可夫游戏(MG)环境中的NASH平衡学习,其中多个代理商竞争,并且可以存在多个NASH均衡。特别是,对于寡头的动态定价环境,由于差异性的诅咒,难以获得精确的NASH平衡。我们开发了一种新的无模型方法来找到近似NASH平衡。然后,将无梯度的黑匣子优化应用于估计$ \ epsilon $,这是代理商单方面偏离任何联合政策的最大奖励优势,并估算了任何给定州的$ \ epsilon $降低政策。政策 - $ \ epsilon $通讯和国家对$ \ epsilon $ - 缩小政策的政策由神经网络表示,后者是NASH策略网。在批处理更新期间,我们通过使用NASH策略网调整操作概率在系统上进行NASH Q学习。我们证明可以学习近似的NASH平衡,尤其是在精确溶液通常很棘手的动态定价域中。
translated by 谷歌翻译
在线实时竞标(RTB)是一款复杂的拍卖游戏,广告商在发生用户请求时很难为广告印象出价。考虑到显示成本,投资回报率(ROI)和其他有影响力的关键绩效指标(KPI),大型广告平台试图平衡动态各个目标之间的权衡。为了应对挑战,我们提出了一种基于强化学习(RL)的多目标参与者侵犯算法,名为Motiac,因为它具有各种目标的优化问题。在MOTIAC中,特定于特定的代理商具有不同的目标和观点的异步更新全球网络,从而实现了强大的招标政策。与以前的RL模型不同,所提出的MOTIAC可以同时完成复杂的招标环境中的多目标任务。此外,我们在数学上证明我们的模型将收敛到帕累托最优性。最后,从腾讯上进行大规模真实世界的商业数据集进行实验,验证了Motiac的有效性与一系列最近的方法
translated by 谷歌翻译
由于数据量增加,金融业的快速变化已经彻底改变了数据处理和数据分析的技术,并带来了新的理论和计算挑战。与古典随机控制理论和解决财务决策问题的其他分析方法相比,解决模型假设的财务决策问题,强化学习(RL)的新发展能够充分利用具有更少模型假设的大量财务数据并改善复杂的金融环境中的决策。该调查纸目的旨在审查最近的资金途径的发展和使用RL方法。我们介绍了马尔可夫决策过程,这是许多常用的RL方法的设置。然后引入各种算法,重点介绍不需要任何模型假设的基于价值和基于策略的方法。连接是用神经网络进行的,以扩展框架以包含深的RL算法。我们的调查通过讨论了这些RL算法在金融中各种决策问题中的应用,包括最佳执行,投资组合优化,期权定价和对冲,市场制作,智能订单路由和Robo-Awaring。
translated by 谷歌翻译
近年来,使用人工智能创造了广泛的投资模式。人工智能自动交易可以扩大交易方式的范围,例如通过授权每天24小时运行的能力以及以高频交易的能力。如果可以充分考虑过去的数据,也可以预期自动交易比使用更多信息交易。在本文中,我们提出了一种基于深度加强学习模型的投资代理,这是一个人工智能模型。该模型考虑了实际交易中涉及的交易成本,并在很长一段时间内创建交易的框架,以便它可以在单一贸易上进行大量利润。在这样做时,它可以最大限度地提高利润,同时保持交易成本低。此外,考虑到实际操作,我们使用在线学习,以便系统可以通过不断更新最新的在线数据而不是使用静态数据来继续学习。这使得可以通过始终纳入当前的市场趋势信息来贸易非静止金融市场。
translated by 谷歌翻译
资产分配(或投资组合管理)是确定如何最佳将有限预算的资金分配给一系列金融工具/资产(例如股票)的任务。这项研究调查了使用无模型的深RL代理应用于投资组合管理的增强学习(RL)的性能。我们培训了几个RL代理商的现实股票价格,以学习如何执行资产分配。我们比较了这些RL剂与某些基线剂的性能。我们还比较了RL代理,以了解哪些类别的代理表现更好。从我们的分析中,RL代理可以执行投资组合管理的任务,因为它们的表现明显优于基线代理(随机分配和均匀分配)。四个RL代理(A2C,SAC,PPO和TRPO)总体上优于最佳基线MPT。这显示了RL代理商发现更有利可图的交易策略的能力。此外,基于价值和基于策略的RL代理之间没有显着的性能差异。演员批评者的表现比其他类型的药物更好。同样,在政策代理商方面的表现要好,因为它们在政策评估方面更好,样品效率在投资组合管理中并不是一个重大问题。这项研究表明,RL代理可以大大改善资产分配,因为它们的表现优于强基础。基于我们的分析,在政策上,参与者批评的RL药物显示出最大的希望。
translated by 谷歌翻译
在电力市场中寻找最佳的招标策略将带来更高的利润。但是,由于系统不确定性,这是一个充满挑战的问题,这是由于其他一代单位的策略所致。分布式优化(每个实体或代理人都决定单独出价)已成为最新技术的状态。但是,它无法克服系统不确定性的挑战。深度强化学习是在不确定环境中学习最佳策略的一种有前途的方法。然而,它无法在学习过程中整合有关空间系统拓扑的信息。本文提出了一种基于深钢筋学习(DRL)与图形卷积神经网络(GCN)的分布式学习算法。实际上,拟议的框架可以通过从环境中获得反馈来帮助代理商更新决策,从而可以克服不确定性的挑战。在该提出的算法中,节点之间的状态和连接是GCN的输入,可以使代理知道系统的结构。有关系统拓扑的此信息可以帮助代理商改善其投标策略并增加利润。我们在不同情况下评估了IEEE 30总线系统上提出的算法。此外,为了研究所提出的方法的概括能力,我们测试了IEEE 39-BUS系统的训练模型。结果表明,所提出的算法具有与DRL相比具有更大的泛化能力,并且在更改系统拓扑时可能会获得更高的利润。
translated by 谷歌翻译
Microgrids(MGS)是未来的缩小能量系统的重要参与者,其中许多智能的东西(物联网)设备在智能电网中的能量管理中相互作用。虽然MG能源管理有许多作品,但大多数研究都假设了一个完美的通信环境,其中不考虑通信故障。在本文中,我们将MG视为具有IOT设备的多智能传播环境,其中AI代理与其同行交换信息以进行协作。但是,由于通信故障或分组丢失,协作信息可能会丢失。这些事件可能会影响整个MG的操作。为此,我们提出了一种多种子体贝叶斯深增强学习(BA-DRL)方法,用于MG能量管理下的通信故障。我们首先定义多个代理部分观察到的马尔可夫决策过程(MA-POMDP)来描述在通信失败下的代理商,其中每个代理人可以更新其对同龄人的行动的信念。然后,我们在BA-DRL中应用用于Q值估计的双深度Q学习(DDQN)架构,并提出了基于信念的相关性平衡,用于多助剂BA-DRL的关节动作选择。最后,仿真结果表明,BA-DRL对供电不确定度和通信故障不确定性强大。 BA-DRL的奖励比NASH Deep Q-Learning(NASH-DQN)和乘法器(ADMM)的交替方向方法分别在1%的通信失效概率下进行4.1%和10.3%。
translated by 谷歌翻译
A fundamental question in any peer-to-peer ride-sharing system is how to, both effectively and efficiently, meet the request of passengers to balance the supply and demand in real time. On the passenger side, traditional approaches focus on pricing strategies by increasing the probability of users' call to adjust the distribution of demand. However, previous methods do not take into account the impact of changes in strategy on future supply and demand changes, which means drivers are repositioned to different destinations due to passengers' calls, which will affect the driver's income for a period of time in the future. Motivated by this observation, we make an attempt to optimize the distribution of demand to handle this problem by learning the long-term spatio-temporal values as a guideline for pricing strategy. In this study, we propose an offline deep reinforcement learning based method focusing on the demand side to improve the utilization of transportation resources and customer satisfaction. We adopt a spatio-temporal learning method to learn the value of different time and location, then incentivize the ride requests of passengers to adjust the distribution of demand to balance the supply and demand in the system. In particular, we model the problem as a Markov Decision Process (MDP).
translated by 谷歌翻译
在本文中,多种子体增强学习用于控制混合能量存储系统,通过最大化可再生能源和交易的价值来降低微电网的能量成本。该代理商必须学习在波动需求,动态批发能源价格和不可预测的可再生能源中,控制三种不同类型的能量存储系统。考虑了两种案例研究:首先看能量存储系统如何在动态定价下更好地整合可再生能源发电,第二种与这些同一代理商如何与聚合剂一起使用,以向自私外部微电网销售能量的能量减少自己的能源票据。这项工作发现,具有分散执行的多代理深度确定性政策梯度的集中学习及其最先进的变体允许多种代理方法显着地比来自单个全局代理的控制更好。还发现,在多种子体方法中使用单独的奖励功能比使用单个控制剂更好。还发现能够与其他微电网交易,而不是卖回实用电网,也发现大大增加了网格的储蓄。
translated by 谷歌翻译
Multi-agent settings remain a fundamental challenge in the reinforcement learning (RL) domain due to the partial observability and the lack of accurate real-time interactions across agents. In this paper, we propose a new method based on local communication learning to tackle the multi-agent RL (MARL) challenge within a large number of agents coexisting. First, we design a new communication protocol that exploits the ability of depthwise convolution to efficiently extract local relations and learn local communication between neighboring agents. To facilitate multi-agent coordination, we explicitly learn the effect of joint actions by taking the policies of neighboring agents as inputs. Second, we introduce the mean-field approximation into our method to reduce the scale of agent interactions. To more effectively coordinate behaviors of neighboring agents, we enhance the mean-field approximation by a supervised policy rectification network (PRN) for rectifying real-time agent interactions and by a learnable compensation term for correcting the approximation bias. The proposed method enables efficient coordination as well as outperforms several baseline approaches on the adaptive traffic signal control (ATSC) task and the StarCraft II multi-agent challenge (SMAC).
translated by 谷歌翻译
我们利用离线增强学习(RL)模型在现实世界中有预算限制的情况下进行连续的目标促销。在我们的应用程序中,移动应用程序旨在通过向客户发送现金奖金并在每个时间段内控制此类现金奖金的成本来促进客户保留。为了实现多任务目标,我们提出了预算限制的加强学习,以进行顺序促销(BCRLSP)框架,以确定要发送给用户的现金奖金的价值。我们首先找出目标策略和相关的Q值,这些Q值是使用RL模型最大化用户保留率的。然后添加线性编程(LP)模型以满足促销成本的限制。我们通过最大化从RL模型中汲取的动作的Q值来解决LP问题。在部署期间,我们将离线RL模型与LP模型相结合,以在预算约束下生成强大的策略。使用在线和离线实验,我们通过证明BCRLSP达到的长期客户保留率和比各种基线更低的成本来证明我们方法的功效。利用近乎实时的成本控制方法,提出的框架可以轻松地使用嘈杂的行为政策和/或满足灵活的预算约束。
translated by 谷歌翻译
This paper presents a multi-agent Deep Reinforcement Learning (DRL) framework for autonomous control and integration of renewable energy resources into smart power grid systems. In particular, the proposed framework jointly considers demand response (DR) and distributed energy management (DEM) for residential end-users. DR has a widely recognized potential for improving power grid stability and reliability, while at the same time reducing end-users energy bills. However, the conventional DR techniques come with several shortcomings, such as the inability to handle operational uncertainties while incurring end-user disutility, which prevents widespread adoption in real-world applications. The proposed framework addresses these shortcomings by implementing DR and DEM based on real-time pricing strategy that is achieved using deep reinforcement learning. Furthermore, this framework enables the power grid service provider to leverage distributed energy resources (i.e., PV rooftop panels and battery storage) as dispatchable assets to support the smart grid during peak hours, thus achieving management of distributed energy resources. Simulation results based on the Deep Q-Network (DQN) demonstrate significant improvements of the 24-hour accumulative profit for both prosumers and the power grid service provider, as well as major reductions in the utilization of the power grid reserve generators.
translated by 谷歌翻译
这篇科学论文提出了一种新型的投资组合优化模型,使用改进的深钢筋学习算法。优化模型的目标函数是投资组合累积回报的期望和价值的加权总和。所提出的算法基于参与者 - 批判性架构,其中关键网络的主要任务是使用分位数回归学习投资组合累积返回的分布,而Actor网络通过最大化上述目标函数来输出最佳投资组合权重。同时,我们利用线性转换功能来实现资产短销售。最后,使用了一种称为APE-X的多进程方法来加速深度强化学习训练的速度。为了验证我们提出的方法,我们对两个代表性的投资组合进行了重新测试,并观察到这项工作中提出的模型优于基准策略。
translated by 谷歌翻译
Recently, some challenging tasks in multi-agent systems have been solved by some hierarchical reinforcement learning methods. Inspired by the intra-level and inter-level coordination in the human nervous system, we propose a novel value decomposition framework HAVEN based on hierarchical reinforcement learning for fully cooperative multi-agent problems. To address the instability arising from the concurrent optimization of policies between various levels and agents, we introduce the dual coordination mechanism of inter-level and inter-agent strategies by designing reward functions in a two-level hierarchy. HAVEN does not require domain knowledge and pre-training, and can be applied to any value decomposition variant. Our method achieves desirable results on different decentralized partially observable Markov decision process domains and outperforms other popular multi-agent hierarchical reinforcement learning algorithms.
translated by 谷歌翻译
智能能源网络提供了一种有效的手段,可容纳可变可再生能源(例如太阳能和风能)的高渗透率,这是能源生产深度脱碳的关键。但是,鉴于可再生能源以及能源需求的可变性,必须制定有效的控制和能源存储方案来管理可变的能源产生并实现所需的系统经济学和环境目标。在本文中,我们引入了由电池和氢能存储组成的混合储能系统,以处理与电价,可再生能源生产和消费有关的不确定性。我们旨在提高可再生能源利用率,并最大程度地减少能源成本和碳排放,同时确保网络内的能源可靠性和稳定性。为了实现这一目标,我们提出了一种多代理的深层确定性政策梯度方法,这是一种基于强化的基于强化学习的控制策略,可实时优化混合能源存储系统和能源需求的调度。提出的方法是无模型的,不需要明确的知识和智能能源网络环境的严格数学模型。基于现实世界数据的仿真结果表明:(i)混合储能系统和能源需求的集成和优化操作可将碳排放量减少78.69%,将成本节省的成本储蓄提高23.5%,可续订的能源利用率比13.2%以上。其他基线模型和(ii)所提出的算法优于最先进的自学习算法,例如Deep-Q网络。
translated by 谷歌翻译
我们考虑了需求侧能源管理的问题,每个家庭都配备了能够在线安排家用电器的智能电表。目的是最大程度地减少实时定价计划下的整体成本。尽管以前的作品引入了集中式方法,在该方法中,调度算法具有完全可观察的性能,但我们提出了将智能网格环境作为马尔可夫游戏的表述。每个家庭都是具有部分可观察性的去中心化代理,可以在现实环境中进行可扩展性和隐私保护。电网操作员产生的价格信号随能量需求而变化。我们提出了从代理商的角度来解决部分可观察性和环境的局部可观察性的扩展,以解决部分可观察性。该算法学习了一位集中批评者,该批评者协调分散的代理商的培训。因此,我们的方法使用集中学习,但分散执行。仿真结果表明,我们的在线深入强化学习方法可以纯粹基于瞬时观察和价格信号来降低所有消耗的总能量的峰值与平均值和所有家庭的电力。
translated by 谷歌翻译
通过提供流动性,市场制造商在金融市场中发挥着关键作用。他们通常填写订单书籍,以购买和出售限额订单,以便为交易员提供替代价格水平来运营。本文精确地侧重于从基于代理人的角度研究这些市场制造商战略的研究。特别是,我们提出了加强学习(RL)在模拟股市中创建智能市场标志的应用。本研究分析了RL市场制造商代理在非竞争性(同时只有一个RL市场制造商学习)和竞争方案(同时学习的多个RL市场标记)以及如何调整其在SIM2REAL范围内的策略有很有趣的结果。此外,它涵盖了不同实验之间的政策转移的应用,描述了竞争环境对RL代理表现的影响。 RL和Deep RL技术被证明是有利可图的市场制造商方法,从而更好地了解他们在股票市场的行为。
translated by 谷歌翻译
本文解决了当参与需求响应(DR)时优化电动汽车(EV)的充电/排放时间表的问题。由于电动汽车的剩余能量,到达和出发时间以及未来的电价中存在不确定性,因此很难做出充电决定以最大程度地减少充电成本,同时保证电动汽车的电池最先进(SOC)在内某些范围。为了解决这一难题,本文将EV充电调度问题制定为Markov决策过程(CMDP)。通过协同结合增强的Lagrangian方法和软演员评论家算法,本文提出了一种新型安全的非政策钢筋学习方法(RL)方法来解决CMDP。通过Lagrangian值函数以策略梯度方式更新Actor网络。采用双重危机网络来同步估计动作值函数,以避免高估偏差。所提出的算法不需要强烈的凸度保证,可以保证被检查的问题,并且是有效的样本。现实世界中电价的全面数值实验表明,我们提出的算法可以实现高解决方案最佳性和约束依从性。
translated by 谷歌翻译
乘客和货物交付的可行性服务服务的无处不在的增长在运输系统领域内带来了各种挑战和机遇。因此,正在开发智能运输系统以最大限度地提高运营盈利能力,用户的便利性和环境可持续性。与riveShiening的最后一次交付的增长呼吁进行高效且凝聚力的系统,运输乘客和货物。现有方法使用静态路由方法来解决考虑到请求的需求和在路线规划期间车辆之间的货物转移。在本文中,我们为合并的商品和乘客运输提供了一种动态和需求意识的舰队管理框架,该乘客运输能够通过允许司机谈判到相互合适的价格中的决策过程中的乘客和司机。乘客接受/拒绝,(2)货物与车辆的匹配,以及货物的多跳转移,(3)基于该插入成本,在沿着它们的途径来动态地为每个车辆提供最佳路线,从而确定匹配的插入成本(4)使用深度加强学习(RL),(5)允许在每个车辆的分布推断,同时共同优化舰队目标,向预期的高乘客和商品需求调度怠速车辆。我们所提出的模型可在每个车辆内独立部署,因为这最大限度地减少了与分布式系统的增长相关的计算成本,并将其民主化决策对每个人进行决策。与各种车辆类型,商品和乘客效用的仿真表明,与不考虑联合负载运输或动态多跳路线规划的其他方法相比,我们的方法的有效性。
translated by 谷歌翻译